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Abstract

We prove that the consequence relation in the Full Non-associative Lambek Calculus
is undecidable. An encoding of the halting problem for 2-tag systems using finitely many
sequents in the language {·,∨} is presented. Therefore already the consequence relation in
this fragment is undecidable. Moreover, the construction works even when the structural
rules of exchange and contraction are added.

1 Introduction

There are many motivations for studying substructural logics, which can be seen as logics lacking
some structural rules when presented in the form of sequent calculi. It is of no surprise that
some of the motivations come from linguistics. Lambek [13] introduced a calculus, which is
now called after him (L), with exactly these motivations in mind. All the normal structural
rules, i.e. exchange, contraction, and weakening, are missing in L. The standard language of L
contains product (·) and two implications (/ and \) as connectives. Nevertheless, it is common
in substructural logics to consider also additive join (∨) and meet (∧). By adding rules for all
these connectives we obtain the Full Lambek Calculus (FL).

With linguistics in mind it is natural that Lambek [14] also introduced a non-associative
variant of his calculus, we call it NL. The main difference can be demonstrated by structures used
to represent sequents. In L the basic structure is a sequence of formulae, but non-associativity in
NL requires a tree with leaves that are labelled by formulae. Again by adding rules for join and
meet we obtain the Full Non-associative Lambek Calculus (FNL), for details see e.g. [4, 9].

A natural question to ask is whether or not the provability in these calculi is decidable. It
is known [4] that provability in FNL is decidable in polynomial space. The problem we deal
with in this paper is whether provability in FNL is decidable if finitely many non-logical axioms
are added, i.e. we study the decidability of the finitary consequence relation in FNL. Although
this problem was shown [3] to be decidable in polynomial time for NL, we prove that it is
undecidable for FNL by encoding the halting problem for 2-tag systems in the language {·,∨},
i.e. we show that the provability from finitely many non-logical axioms is undecidable in this
fragment. Moreover, it is undecidable even if the structural rules of exchange and contraction
are added. It is worth noting that we are in non-associative setting, because associativity usually
plays an important role in similar results, cf. the undecidability of consequence relation in L [2, 3].
However, we show that the distributivity of product over join is sufficient. It is worth noting
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that the consequence relation in the distributive FNL, the distributive laws hold for {∧,∨}, is
decidable, see [4, 7, 11].

Although this paper deals solely with logic, there are some algebraic consequences. FNL is
complete with respect to lattice-ordered residuated groupoids. Therefore we prove that their
word problem is undecidable. This solves negatively Problem 7.1 in [11]. Moreover, the encoding
of the halting problem for 2-tag systems can be used directly to obtain a similar result for
their {·,∨}-reduct—join-semilattices expanded by a groupoid operation (product) where product
distributes over join. Our construction shows that the word problem for such structures is
generally undecidable. This is true even if x · y = y · x and x ≤ x · x hold. Moreover, we do not
need the idempotency and commutativity of join in full generality.

The paper is organized as follows. The next section contains some basic definitions. As for our
purposes it is sufficient to deal with {·,∨} we concentrate solely on this language. Nevertheless,
we present an entire sequent calculus for FNL first. Then we discuss a sequent calculus for the
{·,∨}-fragment and some equivalences on formulae. In the last part of this section tag systems
are introduced. In Section 3 we describe how a tag system can be encoded in the language {·,∨}.
The most important part describes non-logical axioms which express the behaviour of a given tag
system. Then we prove, in Sections 4 and 5, the correctness and completeness of our encoding.
In Section 6 we discuss some possible modifications—addition of the structural rules and the
one-variable fragment. Section 7 contains some algebraic consequences of our construction. A
formulation of our results in terms of term rewriting systems is briefly discussed in Section 8.

2 Preliminaries

Formulae are formed out in the standard way from a denumerable set of propositional variables
(atoms) using connectives and parentheses. All the connectives are binary: product (·), two
implications (\ and /), join (∨), and meet (∧). We denote formulae by small Greek letters and
do not write parentheses if no confusion can arise.

As we are in non-associative setting we have to impose some other notions, following e.g. [3, 4,
9], which simplify the formulation of rules in our sequent calculus and handling of substitutions
later on. We say that all formulae are (atomic) structures, the empty structure ε is a structure,
and if S and T are structures then (S,T) is a structure, nothing else is a structure. Moreover,
(ε,S) = (S, ε) = S and we always assume that a structure does not contain unnecessary empty
structures. A context is a structure S[◦] which has a single occurrence of the special structure
symbol ◦, a place for substitution. Then S[T] denotes the result of substitution of T for ◦ in S[◦].
We use the blackboard bold font for structures and contexts are distinguished by using square
brackets for substitutions.

2.1 Full Non-associative Lambek Calculus

We present a sequent calculus for FNL, cf. [3, 4, 9]. For any structure S and formula ϕ we say
that S⇒ ϕ is a sequent. The definition of provability in a sequent calculus is standard—a proof
is a tree labelled by sequents, where only axioms can occur as leaves and every other vertex
(sequent) is obtained by an inference rule from its children.

Definition 2.1. Let ϕ, ψ, χ, ϕ1, and ϕ2 be arbitrary formulae and S, T be arbitrary structures.
The sequent calculus for FNL has the following axioms and inference rules:

(Id) ϕ⇒ ϕ
S[ϕ]⇒ ψ T⇒ ϕ

(Cut)
S[T]⇒ ψ
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S[(ϕ,ψ)]⇒ χ
(·L)

S[ϕ · ψ]⇒ χ

S⇒ ϕ T⇒ ψ
(·R)

(S,T)⇒ ϕ · ψ

S[ϕ]⇒ ψ T⇒ χ
(\L)

S[(T, χ\ϕ)]⇒ ψ

(ϕ,S)⇒ ψ
(\R)

S⇒ ϕ\ψ

S[ϕ]⇒ ψ T⇒ χ
(/L)

S[(ϕ/χ,T)]⇒ ψ

(S, ϕ)⇒ ψ
(/R)

S⇒ ψ/ϕ

S[ϕ]⇒ χ S[ψ]⇒ χ
(∨L)

S[ϕ ∨ ψ]⇒ χ

S⇒ ϕi(∨R) for i = 1, 2S⇒ ϕ1 ∨ ϕ2

S[ϕi]⇒ ψ
(∧L) for i = 1, 2

S[ϕ1 ∧ ϕ2]⇒ ψ

S⇒ ϕ S⇒ ψ
(∧R) S⇒ ϕ ∧ ψ

Our aim is to discuss calculi with non-logical axioms. Therefore we extend the previous
definition to handle them. They are sequents S⇒α, where S and α are a structure and a formula,
respectively. However, let us remark that non-logical axioms are not closed under substitutions
and therefore propositional variables in them are treated as constants. We use Φ for a set of
non-logical axioms and FNL(Φ) for the sequent calculus containing axioms and rules for FNL
and non-logical axioms from Φ.

As the reader probably anticipated the intended meaning of comma in structures is product.
Two natural extremes arise: the case when there are as many as possible commas instead of
products and vice versa. For this purposes we define translations σ and ρ.

Definition 2.2. Let S be any structure. The functions σ and ρ on structures are given by

σ(S) =


(σ(T), σ(U)) if S = (T,U),

(σ(ϕ), σ(ψ)) if S = ϕ · ψ,
S otherwise.

ρ(S) =

{
ρ(T) · ρ(U) if S = (T,U),

S otherwise.

It is clear that ρ(S) = ρ(σ(S)), σ(S) = σ(ρ(S)), and ρ(S) is a formula, for non-empty S.

Example 2.1. It holds that σ(p · (q · r)) = (p, (q, r)), but σ(p ∨ (q · r)) = p ∨ (q · r), where p, q,
and r are atoms.

Lemma 2.1. For any set of non-logical axioms Φ, structure S, and formula ϕ it holds that S⇒ϕ
is provable in FNL(Φ) iff σ(S)⇒ ϕ is provable in FNL(Φ) iff ρ(S)⇒ ϕ is provable in FNL(Φ).

Proof. It is sufficient to use (·R) and (Cut), or (·L).

As our aim is to produce an encoding of an undecidable problem, we will have to show that
such an encoding is correct and complete. In order to prove completeness we will study all the
possible proofs of some sequents in our calculus. For this reason we want to produce a simpler
calculus which proves the very same sequents.

A natural restriction is to allow only very specific cuts. We call a sequent S⇒ ϕ regular if
the only formulae occurring in the structure S are propositional variables, i.e. it contains no
connectives. A set of non-logical axioms Φ is regular if all its members are regular. Let us
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assume the notation in Definition 2.1 for (Cut). We call ϕ there the cut formula. We say that a
cut is principal if T⇒ ϕ is a regular sequent from non-logical axioms, cf. [17, p. 174]. A proof
containing only principal cuts is called standard.

We need to define some more notions. The grade of a cut is the length of the cut formula ϕ.
The size of a cut is the number of sequents appearing in the proof of S[ϕ]⇒ ψ and T⇒ ϕ.
However, the size of all principal cuts is defined to be 0. Every application of a rule for connectives
creates a formula and we call it the main formula. Other formulae appearing in this sequent are
called side formulae.

Theorem 2.2. For any regular set of non-logical axioms Φ, structure S, and formula ϕ it holds
that S⇒ ϕ has a proof in FNL(Φ) iff S⇒ ϕ has a standard proof in FNL(Φ).

Proof. This is proved by standard cut-elimination techniques, cf. [17, 8, 6, 15]. The proof is
by double induction on the grade and size of cuts. We take a top most (closest to leaves)
non-principal cut and transform it into another cut and the sum of grades of all cuts in the proof
either decreases, or remains equal and then the sum of their sizes decreases. As this process is
well-founded it suffices to show that we are able to transform every possible non-principal cut.

Let us assume we have a top most non-principal cut. If the cut formula is a side formula in
any of two input sequents then we can apply the rule for a sequent where the cut formula is a
side formula after the cut. Therefore we obtain a cut with the same grade but smaller size.

If both the main formulae in the input sequents are the same as the cut formula then both
were obtained by rules for the same connective. Let us assume that it was e.g. \. Then we can
transform

...
T[ξ]⇒ ψ

...
U⇒ χ

(\L)
T[(U, χ\ξ)]⇒ ψ

...
(χ,V)⇒ ξ

(\R)
V⇒ χ\ξ

(Cut)
T[(U,V)]⇒ ψ

into
...

T[ξ]⇒ ψ

...
(χ,V)⇒ ξ

(Cut)
T[(χ,V)]⇒ ψ

...
U⇒ χ

(Cut)
T[(U,V)]⇒ ψ

and we obtain two cuts with the sum of grades smaller then in the original cut. Similarly for
other connectives.

As we have a set Φ we must handle the cases where a cut is applied on other principal cut(s).
In such a case we can always transform

...
T[ξ]⇒ ψ

...
U[χ]⇒ξ V⇒ χ

(Cut)
U[V]⇒ ξ

(Cut)
T[U[V]]⇒ ψ

into
...

T[ξ]⇒ ψ

...
U[χ]⇒ ξ

(Cut)
T[U[χ]]⇒ ψ V⇒ χ

(Cut)
T[U[V]]⇒ ψ
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where we can assume V⇒ χ is a member of Φ. Therefore we obtain cuts with smaller size and
zero size while the sum of grades remains the same.

The final non-trivial case is if we want to use cut on T[ξ]⇒ ψ, which is a member of Φ, and
U[χ]⇒ ξ. Then ξ is an atom, e.g. ξ = p, because Φ is regular. Hence p cannot be the main
formula in U[χ]⇒ p. Therefore the technique for side formulae or the above mentioned cut
transformation can be used on it.

2.2 Non-associative Lambek Calculus with only product and join

The variant of cut-elimination for FNL(Φ) proved in Theorem 2.2 has many consequences. Let Φ
be a regular set of non-logical axioms and S⇒ϕ a sequent such that they contain only connectives
from {·,∨}. Then S⇒ ϕ is provable in FNL(Φ) iff it is provable using only logical axioms (Id),
non-logical axioms from Φ, (·L), (·R), (∨L), (∨R), and (Cut). We will denote such a calculus
NL∨(Φ) to emphasize that the full language of FNL(Φ) is not needed. Moreover, S⇒ ϕ has a
proof in NL∨(Φ) iff it has a standard proof in NL∨(Φ).

The choice of {·,∨} is not arbitrary. Our Φ, which will demonstrate the undecidability of the
consequence relation, will be in this particular language. Therefore we restrict ourselves to this
language from now on. We can also define a natural equivalence relation and normal forms on
formulae in this language. Let the following equivalences hold for any formulae ϕ, ψ, and χ.

ϕ ∼ ϕ ∨ ϕ (Idempotency)
ϕ ∨ ψ ∼ ψ ∨ ϕ (Commutativity)

ϕ ∨ (ψ ∨ χ) ∼ (ϕ ∨ ψ) ∨ χ (Associativity)
ϕ · (ψ ∨ χ) ∼ (ϕ · ψ) ∨ (ϕ · χ) (Left-Distributivity)
(ϕ ∨ ψ) · χ ∼ (ϕ · χ) ∨ (ψ · χ) (Right-Distributivity)

Let ∼∗ be the reflexive, symmetric, and transitive closure of ∼. If we read ∼ in the previous
equivalences as ⇒ and ⇐ it is easy to verify that the corresponding sequents are provable in
NL∨(∅). Hence it is clear that if we prove S[ϕ]⇒ψ and ϕ ∼∗ χ then we can also prove S[χ]⇒ψ
using (Cut).

Definition 2.3. A formula ϕ is simple if the only connective occurring in ϕ is product (·).

We define a variant of normal forms for formulae in {·,∨}, because any such a formula
can be equivalently expressed as a join of simple formulae. It is sufficient to apply left- and
right-distributivity from left to right as many times as needed. Moreover, this representation
can be considered unique (assuming the idempotency, commutativity, and associativity of join)
if we impose an order, e.g. lexicographic, on simple formulae. However, the actual order is not
important for us. Therefore we assume that it is fixed in our paper.

Definition 2.4. A formula ψ is a simple representation of a formula ϕ if ψ =
∨n
i=1 χi, all χi are

simple, and ϕ ∼∗ ψ. We write ψ = [ϕ]s and also use notation that χi ∈ [ϕ]s if this representation
is unique, i.e. n is the minimal possible and simple formulae are ordered.

In order to simplify the notation we will use this representation of formulae. Moreover, we
omit products and most parentheses in formulae as we implicitly assume that product is the
default connective and parentheses tight to right, e.g. pqr is strictly speaking (p · (q · r)).

2.3 Tag systems

Tag systems were proposed by Post [16] and they operate on finite words, i.e. finite sequences
of letters. Let A = {a1, . . . , an} be a finite alphabet of letters with no special halting letter. A
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set of production rules is given by a function π : [1, n]→ A∗, where A∗ is the set of finite words
over A. The computation of the 2-tag system given by A and π on a word w ∈ A∗ is defined as
follows.

If |w| < 2 we terminate. Otherwise, we examine the first letter in w, which is some ai. Then
we delete the first two letters in w and append π(i) to the rest of the word after the last letter
and obtain a new word.

We repeat this process until it is possible, i.e. we can run forever or at some point we
terminate—we obtain a word with less than two letters. We use ↓ for such a word. In the later
case we say that the 2-tag system terminates on w and write w  ∗A,π ↓. It is well-known, see [5],
that the halting problem for a 2-tag system, i.e. whether it terminates on a given w, is generally
undecidable.

Example 2.2. Let A = {a1, a2}, π(1) = a2, and π(2) = a1 describe a 2-tag system. Then our
very elementary system, starting on w = a1a2a2, computes as follows:

w = a1a2a2
a1a2a2a2
a1a2a2a2a1 = ↓

3 Encoding

In this section we present how to encode a computation of a 2-tag system in the language {·,∨}.
We have an arbitrary but fixed 2-tag system given by A = {a1, . . . , an} and π : [1, n] → A∗.
Assume that w ∈ A∗ is a word. We recall our simple representation of formulae—a join of
formulae containing only products. For simplicity we also do not write products and most
parentheses in formulae as we implicitly assume that product is the default connective and
parentheses tight to right.

The encoding is based on a join of simple formulae which read from the left side contain
some prefix, letters from A, and end with a symbol (a capital letter) describing their meaning.

Moreover, to simplify the formulation of the encoding the letters from A are represented in
pairs starting from the left side. It is convenient as 2-tag systems delete pairs of letters. Hence a
pair of letters aiaj is represented by cji . When the length of a word is odd then its last letter ai
is simply represented by ci.

Definition 3.1. Let A = {a1, . . . , an} and π : [1, n]→ A∗ describe a 2-tag system. The set C(A)
of finite words in the pair notation over A is given by C(A) = C(A)∗p ∪ C(A)∗p × C(A)s, where
C(A)p = { cji | 1 ≤ i, j ≤ n } and C(A)s = {c1, . . . , cn}. The translation function δ : A∗ → C(A)
is defined by

δ(w) =


ε if w is the empty word,
ci if w = ai,

cji δ(v) if w = aiajv,

where ε represents the empty string. We will also use the reverse function δ-1 : C(A)→ A∗.

Example 3.1. It holds that δ(a1a2a1a2) = c21c
2
1 and δ(a1a2a1) = c21c1.

Although using our conventions on notation simple formulae may look like sequences, they
are trees. Hence the cut rule only enables us to substitute a tree for a subtree in them. As in our
representation parentheses tight to right it is easy to process the end of a formula, because it is a
subtree. However, when we append or delete letters we have to transfer pieces of information
between the beginning and end of words (formulae). To get around this problem, we will use join.
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First, we present some basic ideas in Section 3.1. Second, the needed non-logical axioms
are presented in Section 3.2. However, all the properties of the encoding will be apparent from
Sections 4 and 5, where the correctness and completeness of this encoding are proved.

3.1 The basic ideas behind

As the encoding, given by non-logical axioms, is relatively complex we present the behavior of
our encoding first. The rules should be then easier to understand.

3.1.1 State formulae

First, we describe how a state of a 2-tag system is represented by a formula in our encoding.
Later on we will call these formulae state formulae. For this purposes the alphabet contains the
following symbols:

• c11, . . . , cnn represent the pairs of letters,

• c1, . . . , cn represent the letters,

• e and e′ represent the deleted pairs of letters,

• X and X ′ represent the end of words.

A state of a computation of a 2-tag system is fully described by the word it processes. We
check whether its length is at least two, delete the first two letters, and append letters according
to π and the first deleted letter. In our encoding we switch deleting and appending. However, it
does not matter, because we will append letters only if the length of the processed word is at
least two.

We start by representing the word w as e δ(w)X, where the only connective is product and
all parentheses tight to right.

Let us look at the 2-tag system from Example 2.2, i.e. w = a1a2a2, π(1) = a2, and π(2) = a1.
Then the initial formula is ec21c2X. The computation continues in such a way that we add π(1)
and change X to X ′. Hence we obtain ec21c22X ′, where c22 represents a2a2, see our pair notation.

The change of the primality of X (and other symbols) will enable us to recognize whether we
only added letters or also deleted the corresponding pair of letters. This subtle detail will be
essential to the completeness proof. It will ensure that the appending and deleting steps must
alternate. Therefore there will be a straightforward translation between state formulae and words
occurring in a computation of a 2-tag system.

In ec21c22X ′ we delete c21, which represents a1a2, by changing it to e′. Hence we have ee′c22X ′.
This represents the next state of the computation as both X and the last e are primed. The
computation can continue to ee′c22c1X and by changing c22 to e we get ee′ec1X. However, then
the computation cannot proceed as only one letter remains.

From the previous example we can see that during the computation we add letters to the end
and change letters at the beginning to e or e′. Therefore correct formulae start with alternating
e and e′. If X and the last e are both primed or both not primed then such a formula directly
represents a state of a 2-tag system (a word). Otherwise, the letters were added according to π,
but the corresponding first two letters, represented by cji , had not been deleted.

If there are less than two letters from A and the closest e and X are both primed or both
not primed we are in a termination state. As we want an unique representation of termination
states we first delete the only letter (if any) from A and then also e and e′ one by one. Therefore
all the termination states can be represented by the formula eX.

In our example, we get the following sequence ee′ec1X, ee′eX, ee′X ′, and finally we get eX.
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3.1.2 Auxiliary formulae

Nevertheless, it is clear that we must check whether we appended and deleted (changed to e
or e′) the right letters. Moreover, we must be very particular about the correct alternation of
appending and deleting steps. Therefore we have to use some auxiliary formulae, which ensure
that the system is simulated faithfully. Hence whenever we execute any such a step we obtain a
join of a state formula and an auxiliary formula. This auxiliary formula certifies that the step
was used correctly. For this purposes some more symbols are needed:

• A represents the end of general auxiliary formulae,

• Ci and C ′i, for 1 ≤ i ≤ n, represent the end of auxiliary formulae for adding letters,

• D and D′ represent the end of auxiliary formulae for deleting letters,

• d and d′ represent the position where a pair of letters was deleted.

The idea is that whenever we obtain an auxiliary formula we must transform it into the
general auxiliary formula eA. This ensures that the step was used correctly.

Let us again assume we have ec21c2X. We want to append π(1). However, this is possible
only if the word represented by this formula begins with a1 and contains at least one more letter.
Hence some cj1 has to be after the last e. We will be able to prove

ec21c2X ⇒ ec21(c
2
2X
′ ∨ c2C1),

from our non-logical axioms and ec21(c22X
′∨ c2C1) ∼∗ ec21c22X ′∨ ec21c2C1. Here C1 in ec21c2C1 says

that we appended π(1) and hence we want to check whether the word represented by ec21c2C1

starts with some cj1. We can show that by deleting all the letters but the first pair. Therefore
from ec21c2C1 we obtain ec21C1. Then we get eA, because C1 matches the first letter in c21, which
represents a1a2, and the primality of C1 and e is the same. Moreover, c21 certifies that the original
formula contained at least two letters from A before π(1) was appended. It works similarly for
C ′i, e

′, and X ′.
However, we cannot continue with another appending step, because the primality of X ′

is different from the primality of e in ec21c22X ′. Hence we would not be able to transform the
auxiliary formula into eA. Therefore we now have to delete the first two letters, c21 in our case.
We will be able to prove

ec21c
2
2X
′⇒ e(e′ ∨ d′)c22X ′

and e(e′ ∨ d′)c22X ′ ∼∗ ee′c22X ′ ∨ ed′c22X ′. Here ed′c22X ′ is not a state formula, because it contains
d′. Hence it is an auxiliary formula and we want to obtain eA from it. First, we get ed′c22D′.
Here D′ says that we deleted the first two letters, which are represented by d′. The procedure is
then similar to the previous case, we delete all the letters between d′ and D′. From ed′c22D

′ we
obtain ed′D′ and then eA. This last step is possible for the following two reasons. First, D′ and
d′ are primed and e is not primed. Second, there is no further symbol between e and d′. It works
similarly for X, but we use D, d and get e in the state formula.

Note that we could now continue by appending π(2), because e′ and X ′ in ee′c22X ′ are both
primed, but not by deleting c22, because we would not be able to transform the obtained auxiliary
formula into eA.

3.2 Actual representation

From the previous text it should be clear that the question whether a 2-tag system given by A
and π terminates on a w ∈ A∗ will be translated into the question whether

e δ(w)X ⇒ eX ∨ eA
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is provable in NL∨(Φ[A, π]), where Φ[A, π] is a finite set of non-logical axioms given in the
following definition.

Definition 3.2. Let A = {a1, . . . , an} and π : [1, n]→ A∗ describe a 2-tag system. The set of
non-logical axioms Φ[A, π] contains

e′eX ⇒ e′X ′ (1)
eciX ⇒ eX (2)
ee′A⇒ eA (3)

ee′X ′⇒ eX (4)
e′ciX

′⇒ e′X ′ (5)
e′eA⇒ e′A (6)

ecjiCi⇒ eA (7)

ckj clCi⇒ ckjCi (8)

ckj c
m
l Ci⇒ ckjCi (9)

cjX ⇒ δ(aj π(i))X ′ ∨ cjCi (10)

ckjX ⇒ ckj δ(π(i))X ′ ∨ ckjCi (11)

e′cjiC
′
i⇒ e′A (12)

ckj clC
′
i⇒ ckjC

′
i (13)

ckj c
m
l C
′
i⇒ ckjC

′
i (14)

cjX
′⇒ δ(aj π(i))X ∨ cjC ′i (15)

ckjX
′⇒ ckj δ(π(i))X ∨ ckjC ′i (16)

ed′D′⇒ eA (17)
d′ciD

′⇒ d′D′ (18)

d′cjiD
′⇒ d′D′ (19)

cji ckD
′⇒ cjiD

′ (20)

cji c
l
kD
′⇒ cjiD

′ (21)
X ′⇒D′ (22)

cji ⇒ e′ ∨ d′ (23)

e′dD⇒ e′A (24)
dciD⇒ dD (25)

dcjiD⇒ dD (26)

cji ckD⇒ cjiD (27)

cji c
l
kD⇒ cjiD (28)
X ⇒D (29)

cji ⇒ e ∨ d (30)

for every i, j, k, l,m ∈ [1, n].

Remark. The set Φ[A, π] is not regular, but we can replace all the products on the left side of
sequents by commas and obtain regular sequents, i.e. we use σ. Lemma 2.1 says that this does
not change provability. Therefore we can always assume that Φ[A, π] is regular.

The intuitive and simplified meaning of these non-logical axioms is following. By (1,4) and
(3,6) we say that e and e′ have to alternate. The axioms (1,4) and (2,5) say that a terminating
word can contain no or one letter from A and that X and the last e are simultaneously primed
or not primed.

It is important to notice that some rules have two variants, because we use the pair notation
and words can have odd or even length.

The axioms (7–9) (or 12–14) describe how formulae containing Ci (or C ′i) have to look like,
i.e. cji is right after e (or e

′). Likewise, the axioms (17–21) (or 24–28) describe formulae containing
D′ (or D), i.e. d′ (or d) is right after e (or e′).

The meaning of (10,11) (or 15,16) is more complicated. If we apply them to a simple formula
we obtain a join of two simple formulae, using the simple representation. The first of them
contains appended π(i) and changed primality of X. The second formula contains Ci (or C ′i)
and we want to obtain eA from this formula. This is possible if cji is right after e (or e′) and it
certifies that the rule was used correctly.

If the axioms (23) (or 30) are applied to a simple formula we again obtain a join of two simple
formulae, using the simple representation. The first one contains e′ (or e) instead of cji . The
second one contains d′ (or d) instead of it. We want to eliminate, obtain eA, the second formula.

9



The axioms (22) (or 29) allow us to rewrite such a formula to one ending with D′ (or D). We
can eliminate it, obtain eA, if d′ (or d) is right after e (or e′).

4 Correctness of encoding

We presented the set of non-logical axioms Φ[A, π] for a given 2-tag system described by
A = {a1, . . . , an} and π : [1, n]→ A∗. From now on, this 2-tag system will be fixed.

In this section we show that the representation is correct, i.e. what is computed by the
2-tag system can be also proved using Φ[A, π] and our encoding. As we already indicated we
divide formulae into two groups: formulae representing a state of the 2-tag system and auxiliary
formulae.

In the following text we use 〈ee′〉m to describe repeating e and e′. Let 〈ee′〉0 be the empty
sequence and 〈ee′〉m+1 = ee′〈ee′〉m. Moreover, to simplify our presentation we handle simple
formulae as sequences. For our purposes here, we can do it, but we have to be aware of their
real representation, i.e. they are trees containing products and parentheses which tight to right.
Therefore if we assume that evX = ec21c2X then the subsequence v = c21c2 is not here even a
(sub)formula, because ec21c2X is strictly speaking (e · (c21 · (c2 ·X))). However, we can say that
v ∈ C(A) and hence even δ-1(v) ∈ A∗, because it represents the word a1a2a2.

Definition 4.1. A formula ϕ is an auxiliary formula in A iff it is one of the following

1. 〈ee′〉meA,

2. 〈ee′〉mecjivCi,

3. 〈ee′〉med′vD′,

4. 〈ee′〉med′vX ′,

5. 〈ee′〉mee′A,

6. 〈ee′〉mee′cjivC ′i,

7. 〈ee′〉mee′dvD,

8. 〈ee′〉mee′dvX,

for v ∈ C(A), m ≥ 0, and 1 ≤ i, j ≤ n. We define the set of all auxiliary formulae in A by
ΓA = {ψ | ψ is an auxiliary formula in A}.

In the following lemmata we simplify proofs using Lemma 2.1. If we want to use (Cut)
with the cut formula ϕ, then there has to be a structure S[ϕ]. However, sometimes we want to
“substitute” for a subformula ϕ in a formula χ. This is possible if χ = ρ(S[ϕ]), because S[ϕ]⇒ ψ
is provable iff χ⇒ ψ is provable by Lemma 2.1. Then using (Cut) on S[ϕ]⇒ ψ and T⇒ ϕ
we obtain S[T]⇒ ψ. Finally, using again Lemma 2.1 we get ρ(S[T])⇒ ψ. We denote such an
application of (Cut) by (Cut?). Similarly, we can use (∨L) and denote it (∨L?).

Lemma 4.1. If ϕ ∈ ΓA then ϕ⇒ eA is provable in NL∨(Φ[A, π]).

Proof. We check all the cases. If ϕ = 〈ee′〉meA, for m > 0, then we use (6) and (3) from Φ[A, π]

ee′A⇒ eA e′eA⇒ e′A(Cut?)
〈ee′〉1eA⇒ eA ee′A⇒ eA

(Cut?)
〈ee′〉2A⇒ eA

...
〈ee′〉mA⇒ eA e′eA⇒ e′A

(Cut?)
〈ee′〉meA⇒ eA

We get 〈ee′〉mee′A⇒ eA by one more application of (3).
If ϕ = 〈ee′〉mecjivCi we first obtain
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...
〈ee′〉meA⇒ eA ecjiCi⇒ eA

(Cut?)
〈ee′〉mecjiCi⇒ eA

using (7) and then use (9) as many times as needed, i.e. b| δ-1(v)|/2c-times. If δ-1(v) has odd
length then we have to use also (8). The situation with 〈ee′〉mee′cjivC ′i is completely analogous.

If we want to prove 〈ee′〉med′vD′⇒ eA (or 〈ee′〉mee′dvD⇒ eA) we start from 〈ee′〉meA⇒ eA
(or 〈ee′〉mee′A⇒ eA) and use (17–21) (or 24–28) in a very similar fashion. Finally, using (22)
(or 29) on 〈ee′〉med′vD′⇒ eA (or 〈ee′〉mee′dvD⇒ eA) we immediately get 〈ee′〉med′vX ′⇒ eA
(or 〈ee′〉mee′dvX ⇒ eA).

Corollary 4.2. If ϕ ∈ ΓA then ϕ⇒ eX ∨ eA is provable in NL∨(Φ[A, π]).

Definition 4.2. A formula ϕ is a state formula in A iff it is one of the following

1. 〈ee′〉mevX,

2. 〈ee′〉mee′cjivX,

3. 〈ee′〉mee′vX ′,

4. 〈ee′〉mecjivX ′,

for v ∈ C(A), m ≥ 0, and 1 ≤ i, j ≤ n. We define the set of all state formulae in A by
ΛA = {ψ | ψ is a state formula in A}.

The function τ which translates a state formula ϕ into a word in A∗ is defined by

τ(ϕ) = δ-1(v).

Example 4.1. It holds that τ(ec21c2X) = a1a2a2, τ(ec21c
2
2X
′) = a2a2, and τ(ee′c1X

′) = a1 = ↓.
Lemma 4.3. If w  ∗A,π ↓ then 〈ee′〉me δ(w)X⇒ eX ∨ eA and 〈ee′〉mee′ δ(w)X ′⇒ eX ∨ eA are
provable in NL∨(Φ[A, π]) for any m ≥ 0.

Proof. We prove this by induction on the length of the 2-tag derivation. If w is in a termination
state it means w is the empty sequence or w = ai, for some i ∈ [1, n]. We use (4) and (1)
m-times to obtain 〈ee′〉meX ⇒ eX. Using (2) we get 〈ee′〉meciX ⇒ eX, for 1 ≤ i ≤ n. One
more application of (4) on 〈ee′〉meX ⇒ eX leads to 〈ee′〉mee′X ′⇒ eX. Then using (5) we get
〈ee′〉mee′ciX ′⇒ eX, for 1 ≤ i ≤ n. We complete all these cases by (∨R).

Let us assume that one step computation of our 2-tag system leads from w to v and
〈ee′〉mee′ δ(v)X ′⇒ eX ∨ eA and 〈ee′〉mee′e δ(v)X ⇒ eX ∨ eA are provable in NL∨(Φ[A, π]). It
means that there are indexes i and j such that w = aiaju and v = uπ(i). Using Corollary 4.2
and then (23) we obtain

...
〈ee′〉mee′ δ(uπ(i))X ′ ⇒ eX ∨ eA

...
〈ee′〉med′ δ(uπ(i))X ′ ⇒ eX ∨ eA

(∨L?)
〈ee′〉me(e′ ∨ d′) δ(uπ(i))X ′⇒ eX ∨ eA cji ⇒ e′ ∨ d′

(Cut?)
〈ee′〉mecji δ(uπ(i))X ′⇒ eX ∨ eA

If u has odd length, u = tak, then δ(tak π(i)) = δ(t) δ(ak π(i)), and using Corollary 4.2 and
then (10) we get

...
〈ee′〉mecji δ(t) δ(ak π(i))X ′ ⇒ eX ∨ eA

...
〈ee′〉mecji δ(t)ckCi ⇒ eX ∨ eA

(∨L?)
〈ee′〉mecji δ(t)(δ(ak π(i))X ′ ∨ ckCi)⇒ eX ∨ eA ckX ⇒ δ(ak π(i))X ′ ∨ ckCi(Cut?)

〈ee′〉mecji δ(t)ckX ⇒ eX ∨ eA
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where cji δ(t)ck = δ(aiaju) = δ(w). If u has even length we use (11).
The proof of 〈ee′〉mee′cji δ(u)X ′⇒eX∨eA using the provability of 〈ee′〉mee′e δ(v)X⇒eX∨eA

is completely analogous.

Corollary 4.4. If w  ∗A,π ↓ then e δ(w)X ⇒ eX ∨ eA is provable in NL∨(Φ[A, π]).

5 Completeness of encoding

We have proved that our encoding can simulate any terminating computation of our fixed 2-tag
system given by A = {a1, . . . , an} and π : [1, n]→ A∗. It remains to prove the other direction—
any proof of a sequent expressing that the system terminates can be translated into a terminating
computation of the given 2-tag system.

Recall the definition of our simple representation, see Definition 2.4, the translation ρ, which
replaces all commas in structures by products, and the reverse translation σ, see Definition 2.2.

As was already mentioned we can assume that all the members of Φ[A, π] are regular, i.e. any
α⇒ β from Φ[A, π] is treated as σ(α)⇒ β, see Lemma 2.1. We know from Theorem 2.2 that
S⇒ ϕ is provable in NL∨(Φ[A, π]) iff it has a standard proof in NL∨(Φ[A, π]). Therefore the
following three lemmata are proved by induction on the height of the proof, which is the length
of the longest branch in its tree representation, with only principal cuts.

We want to prove that if S⇒eX∨eA is provable then the simple representation of ρ(S) contains
only auxiliary formulae or state formulae that represent words with terminating computations.

The main reason, why we use the equivalence ∼∗ on formulae and simple representation,
is the rule (∨L). This rule enables us to join two structures, e.g. from ec1X ⇒ eX ∨ eA and
ec2X ⇒ eX ∨ eA we can easily prove e(c1 ∨ c2)X ⇒ eX ∨ eA and (e ∨ e)c1X ⇒ eX ∨ eA. Our
simple representation is a way how to handle similar obstacles.

Lemma 5.1. If S⇒ eA is provable in NL∨(Φ[A, π]) then for all ψ ∈ [ρ(S)]s hold ψ ∈ ΓA.

Proof. The proof is by induction on the height of the standard proof. If the height is zero then
the only possibilities are (Id) or members of Φ[A, π]. Hence [ρ(S)]s can contain only eA, ee′A,
ed′D′, or ecjiCi, for any i, j ∈ [1, n]. All these formulae are elements of ΓA.

We assume that this lemma holds for all standard proofs with height at most n. Fix an
arbitrary proof of S⇒ eA with height n+ 1. We have to check all the possible last steps.

It is impossible that (∨R) is the last step and if it is (·L) then we get S⇒ eA from some
S′⇒ eA, where ρ(S) = ρ(S′).

If (∨L) is the last step then it means that there are W, χ, and ξ such that S = W[χ ∨ ξ],
W[χ]⇒ eA, and W[ξ]⇒ eA. Hence ψ ∈ [ρ(S)]s iff ψ ∈ [ρ(W[χ])]s or ψ ∈ [ρ(W[ξ])]s.

If (·R) is the last step then there exist U and V such that S = (U,V), U⇒ e, and V⇒A. It
is easy to prove by induction that e = [U]s and A = [V]s. Hence eA = [(U,V)]s.

The last case is when we use a principal cut. Let us assume that from S′⇒ eA and a member
of Φ[A, π] we obtain S⇒ eA.

If an axiom σ(α)⇒β with no join is used then it is sufficient to show for any ρ(T[β]) ∈ [ρ(S′)]s,
i.e. ρ(T[β]) ∈ ΓA, that ρ(T[α]) ∈ ΓA. We check all the possible axioms and assume T[β] is an
arbitrary but fixed.

If we use one of (3), (6–9), (12–14), (17–21), or (24–28) then from T[β], where ρ(T[β]) ∈ ΓA,
we obtain T[σ(α)] such that ρ(T[α]) ∈ ΓA.

If we use (22) or (29) then ρ(T[β]), which is in ΓA, is equal to some 〈ee′〉med′vD′ or
〈ee′〉mee′dvD. Therefore the formula ρ(T[α]) is also in ΓA.

The other axioms from Φ[A, π] cannot be applied, because the induction hypothesis would
be violated as we will show in the rest of the proof.
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If (1), (2), (4), or (5) were used it would mean that T[β] contains eX or e′X ′. Hence
ρ(T[β]) /∈ ΓA.

We have to also check axioms σ(α)⇒ β ∨ γ containing join. It suffices to show for any two
formulae ρ(T[β]) ∈ [ρ(S′)]s and ρ(T[γ]) ∈ [ρ(S′)]s, i.e. ρ(T[β]), ρ(T[γ]) ∈ ΓA, that ρ(T[α]) ∈ ΓA,
because (ρ(T[β]) ∨ ρ(T[γ])) ∼∗ ρ(T[β ∨ γ]). Let T[β] and T[γ] be arbitrary but fixed.

If (10) or (11) were used then we could clearly assume ρ(T[β]) ends with X ′ and ρ(T[γ]) with
Ci. Moreover, they are members of ΓA. Therefore ρ(T[γ]) has to be equal to some 〈ee′〉mecjivCi
and hence ρ(T[β]) = 〈ee′〉mecji δ(δ

-1(v)π(i))X ′, but then ρ(T[β]) /∈ ΓA. It follows that (10)
and (11) are not applicable in this case. Similarly for (15) and (16).

If (23) were used then we could clearly assume ρ(T[γ]) contains d′. It is impossible that
ρ(T[γ]) = 〈ee′〉med′vD′ and ρ(T[β]) = 〈ee′〉mee′vD′ as ρ(T[β]) /∈ ΓA. Therefore ρ(T[γ]) =
〈ee′〉med′vX ′ and ρ(T[β]) = 〈ee′〉mee′vX ′, but then also ρ(T[β]) /∈ ΓA. Similarly for (30).

Lemma 5.2. If S⇒ eX is provable in NL∨(Φ[A, π]) then for all ψ ∈ [ρ(S)]s hold ψ ∈ ΛA and
τ(ψ) = ↓.

Proof. The proof is by induction on the height of the standard proof. If the height is zero then
the only possibilities are (Id) or members of Φ[A, π]. Hence [ρ(S)]s can contain only eX, ee′X ′,
or eciX, for any i ∈ [1, n]. All these formulae are trivially equal to ↓ under τ .

We assume that this lemma holds for all standard proofs with height at most n. Fix an
arbitrary proof of S⇒ eA with height n+ 1. We need to consider all the possible last steps.

It is impossible that (∨R) is the last step and if it is (·L) or (∨L) then we can use arguments
from the previous lemma.

If (·R) is the last step then S = (U,V), U⇒ e, and V⇒X. It is easy to prove by induction
that e = [U]s and X = [V]s. Hence eX = [(U,V)]s.

The last case is when we use a principal cut. Let us assume that from S′⇒ eA and a member
of Φ[A, π] we obtain S⇒ eA. It is clear that only the axioms (1), (2), (4), and (5) from Φ[A, π]
are applicable. The other axioms contain on the right side a symbol, which does not occur in ΛA.
This violates the induction hypothesis.

As an axiom σ(α)⇒ β with no join is used, it is sufficient to show for any ρ(T[β]) ∈ [ρ(S′)]s,
i.e. τ(ρ(T[β])) = ↓, that τ(ρ(T[α])) = ↓. Fix T[β] and we know that the axiom (1), (2), (4), or (5)
is used. Hence T[β] contains eX or e′X ′. We conclude from ρ(T[β]) ∈ ΛA that τ(ρ(T[α])) = ↓.

Lemma 5.3. If S⇒ eX ∨ eA is provable in NL∨(Φ[A, π]) then for all ψ ∈ [ρ(S)]s hold

1. ψ ∈ ΓA, or

2. ψ ∈ ΛA and τ(ψ) ∗A,π ↓.

Proof. The proof is by induction on the height of the standard proof. If the height is zero then
the only possibility is (Id). Hence [ρ(S)]s contains eX and eA. We know that τ(eX) = ↓ and
eA ∈ ΓA. Note that τ is defined only for state formulae and therefore the application of τ on any
formula implies that this formula is in ΛA.

We assume that this lemma holds for all standard proofs with height at most n. Fix an
arbitrary proof of S⇒ eX ∨ eA with height n+ 1. We need to consider all the possible last steps.

It is impossible that (·R) is the last step and if it is (·L) or (∨L) then we can use arguments
from Lemma 5.1.

If (∨R) is the last step then there are two possibilities. If we use (∨R) on S⇒ eA then for all
ψ ∈ [ρ(S)]s hold ψ ∈ ΓA by Lemma 5.1. And if we use (∨R) on S⇒ eX then for all ψ ∈ [ρ(S)]s
hold τ(ψ) = ↓ by Lemma 5.2.

The last case is when we use a principal cut. Let us assume that from S′⇒ eX ∨ eA and a
member of Φ[A, π] we obtain S⇒ eX ∨ eA.
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If an axiom σ(α)⇒β with no join is used then it is sufficient to show for any ρ(T[β]) ∈ [ρ(S′)]s,
i.e. ρ(T[β]) ∈ ΓA∪ΛA, that ρ(T[α]) ∈ ΓA or τ(ρ(T[α])) ∗A,π ↓. We have to check all the possible
axioms and assume T[β] is an arbitrary but fixed.

If we use the axiom (1), (2), (4), or (5) it means that T[β] contains eX or e′X ′. Hence
ρ(T[β]) ∈ ΛA and τ(ρ(T[α])) = ↓.

If we use one of (3), (6–9), (12–14), (17–21), or (24–28) then ρ(T[β]) ∈ ΓA. Applying any of
these axioms we obtain T[σ(α)] such that ρ(T[α]) ∈ ΓA.

If we use (22) or (29) then ρ(T[β]) ∈ ΓA, because ρ(T[β]) is equal to some 〈ee′〉med′vD′ or
〈ee′〉mee′dvD and hence ρ(T[α]) ∈ ΓA.

We have to also check axioms σ(α)⇒ β ∨ γ containing join. In this case two formulae
ρ(T[β]) ∈ [ρ(S′)]s and ρ(T[γ]) ∈ [ρ(S′)]s, i.e. ρ(T[β]), ρ(T[γ]) ∈ ΓA ∪ ΛA, are sufficient as
(ρ(T[β]) ∨ ρ(T[γ])) ∼∗ ρ(T[β ∨ γ]). We have to show that ρ(T[α]) ∈ ΓA or τ(ρ(T[α]))  ∗A,π ↓.
Let T[β] and T[γ] be arbitrary but fixed.

If we use (10) or (11) then we can clearly assume ρ(T[β]) ends with X ′ and ρ(T[γ]) with Ci.
Therefore ρ(T[γ]) is equal to some 〈ee′〉mecjivCi and hence ρ(T[β]) = 〈ee′〉mecji δ(δ

-1(v)π(i))X ′.
Hence ρ(T[α]) = 〈ee′〉mecjivX and τ(ρ(T[α])) = aiaj δ

-1(v). We know that τ(ρ(T[β])) =
δ-1(v)π(i)  ∗A,π ↓ and hence τ(ρ(T[α]))  ∗A,π ↓, because we get δ-1(v)π(i) from aiaj δ

-1(v)
by a single step of the 2-tag system. Similarly for (15) and (16).

If we use (23) then we can clearly assume ρ(T[γ]) contains d′. It is impossible that ρ(T[γ]) =
〈ee′〉med′vD′ and ρ(T[β]) = 〈ee′〉mee′vD′, because ρ(T[β]) /∈ ΓA ∪ ΛA. Therefore ρ(T[γ]) =
〈ee′〉med′vX ′ and ρ(T[β]) = 〈ee′〉mee′vX ′. Hence ρ(T[α]) = 〈ee′〉mecjivX ′ and τ(ρ(T[α])) =
δ-1(v) = τ(ρ(T[β])) ∗A,π ↓. Similarly for (30).

Corollary 5.4. If e δ(w)X ⇒ eX ∨ eA is provable in NL∨(Φ[A, π]) then w  ∗A,π ↓.

As the halting problem for 2-tag systems is generally undecidable Corollaries 4.4 and 5.4 give
us that the consequence relation in NL∨, and therefore in FNL, is undecidable.

6 Some possible modifications

In this section we discuss some easy modifications of our result. Although they could influence
the validity of the completeness of encoding proved in the previous section, we will show that
they have no or negligible effect on the proofs of Lemmata 5.1–5.3.

6.1 Adding structural rules

We can add structural rules to our non-associative calculus, cf. [9]. The rules of exchange (e),
contraction (c), and left-weakening or integrality (i) are defined as:

S[(T,U)]⇒ ψ
(e)

S[(U,T)]⇒ ψ

S[(T,T)]⇒ ψ
(c)

S[T]⇒ ψ

S[ε]⇒ ψ
(i)

S[T]⇒ ψ

It is obvious that our construction fails with the rule of left-weakening. In fact then the
consequence relation is decidable, see [1].

However, our construction works with exchange and contraction. It is easy to check that
Theorem 2.2 is provable when the rule of exchange is added. If the rule of contraction is added
then the only non-trivial case is when
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...
T[(U[χ],U[χ])]⇒ ψ

(c)
T[U[χ]]⇒ ψ

...
V⇒ χ

(Cut)
T[U[V]]⇒ ψ

Nevertheless, such a proof can be transformed into

...
T[(U[χ],U[χ])]⇒ ψ

...
V⇒ χ

(Cut)
T[(U[V],U[χ])]⇒ ψ

...
V⇒ χ

(Cut)
T[(U[V],U[V])]⇒ ψ

(c)
T[U[V]]⇒ ψ

Thus we can prove a variant of Theorem 2.2 assuming a more general definition of (Cut) that
makes possible to perform these two cuts at once, see [12], and a small change in the inductive
argument.1

Therefore it is sufficient to show that Corollary 5.4 holds even with exchange and contraction.

6.1.1 Exchange

As all our simple formulae can be represented as sequences of propositional variables, where
brackets tight to right, it is a simple matter to show that our construction works when the rule
of exchange is added, because in our case we can define a normal form. For example it is clear
that (e((Xe)e′)) is equivalent to ee′eX. We define the function l by

l(ϕ · ψ) =


ϕ · l(ψ) if ψ is not a propositional variable,
ψ · l(ϕ) if ϕ is not a propositional variable,
ϕ · ψ if ψ is a propositional variable which is a capital letter,
ψ · ϕ if ϕ is a propositional variable which is a capital letter,

and l(p) = p for any propositional variable p. We can change the definition of simple representation,
see Definition 2.4, not to be a join of simple formulae χi, but a join of simple formulae l(χi).
Then it is easy to check that Lemmata 5.1–5.3 hold with this adapted definition.

6.1.2 Contraction

The case when the rule of contraction is added is easy, because this rule is not applicable in the
proofs of Lemmata 5.1–5.3. The reason is that no formula occurring in our construction has ϕ ·ϕ
as a subformula, cf. the definition of Φ[A, π], ΓA, and ΛA. Moreover, the rule of exchange has no
effect on that.

6.2 One-variable fragment

It is easily seen that in our construction we can encode any finite sequence of variables by one
variable using non-associativity. Let p be the only variable and we want to encode the sequence
of variables p0, . . . , pm. The variable pi is uniquely determined by i and hence also by 2i+ 1.2

1It is worth noting that we have the rule of contraction for structures and not only for formulae. The rule of
contraction for formulae does not admit cut-elimination. However, as we have product in the language both rules
are equivalent in the presence of (Cut), cf. [9].

2The reason why we use 2i+ 1 instead of i is that this encoding works even with the rule of exchange, because
1 is always the last symbol in the binary representation.
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We can represent pi by the binary representation of 2i+ 1, hence we use k = dlog2(m+ 1)e+ 1
bits, where we replace all zeros by p and ones by (pp) and all the parentheses in the resulting
formula tight to right.

Example 6.1. If we have p0, . . . , p15 then we need 5 bits. Therefore p2 is represented by 00101
and hence by (p(p((pp)(p(pp))))).

It is obvious that this encoding does not work with the rule of contraction. However, it is easy
to obtain a function similar to l from Section 6.1.1 which works nicely with the rule of exchange.

7 Remarks on algebraic consequences

As FNL is complete with respect to lattice-ordered residuated groupoids, see e.g. [9], our paper
proves that the word problem for them is undecidable. However, we can obtain a stronger result
as we need only {·,∨}. Let G be a set with a groupoid operation (product) and join on it,
where join is idempotent, commutative, associative, and product distributes over join, i.e. they
satisfy equalities in Section 2.2. As 〈G,∨〉 is a join-semilattice we can define x ≤ y iff y = x ∨ y.
Our construction shows that the word problem for such a structure is generally undecidable.
Therefore it does not have the finite embedability property (FEP).3

The translation is fairly straightforward. We know that S⇒ ϕ is provable iff ρ(S)⇒ ϕ is
provable. We can translate that into ρ(S) ≤ ϕ, i.e. ϕ = ρ(S) ∨ ϕ. This way we can translate all
the axioms from Φ[A, π], see Definition 3.2, and use them as a theory. The 2-tag system given
by A and π terminates on a word w ∈ A∗ iff eX ∨ eA = e δ(w)X ∨ eX ∨ eA is provable from
this theory.

A direct proof that this works can be based on Sections 4 and 5. The correctness is proved
as in Section 4. The proof of completeness by induction on the length of the derivation starting
from eX ∨ eA is analogous to the proof in Section 5. Note that our simple representation is
convenient for this purpose.

Let us also note that the structural rules of exchange and contraction given in Section 6.1
correspond to x · y = y · x and x ≤ x · x, respectively. Therefore the word problem is undecidable
even if these equalities hold.

On the other hand, it is easy to check that in the proof of correctness we do not need the
idempotency and commutativity of join in the full generality. It suffices to add the following
particular equality

eA ∨ eX = eX ∨ eA. (31)

However, for our construction to work we need the associativity of join and the distributivity of
product over join.

8 Remarks on term rewriting systems

A natural way how to think about our construction is that we produce a term rewriting system.
For our purposes here, a term rewriting system is a collection of rewriting rules ϕ→ ψ, where ϕ
and ψ are formulae. Such a rule says that in a formula we can replace any of its subformula ϕ by
ψ.

3On the contrary, the FEP holds for distributive lattice-ordered residuated groupoids, see [4, 7, 11]. There
is a quasi-identity in the language {·,∨} that holds in the distributive case but does not hold in the non-
distributive one. A join-semilattice L is distributive if a ≤ a1 ∨ a2, for a, a1, a2 ∈ L, implies a = a′

1 ∨ a′
2,

for some a′
1, a

′
2 ∈ L, where a′

1 ≤ a1 and a′
2 ≤ a2, see [10]. A particular example of such a quasi-identity is

x ≤ x1 ∨ x2 and y ≤ y1 ∨ y2 implies xy ≤ xy1 ∨ x1y2 ∨ x2y, which was kindly provided by Rostislav Horčík.
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It is clear that we can read ϕ⇒ ψ as ϕ→ ψ. Therefore our rewriting system is given by
Φ[A, π] and the rules of the sequent calculus. Note that strictly speaking rewriting rules are
stronger than (Cut), but in our case it is a simple matter to simulate them by (Cut).

An obvious question to ask is whether all rules given by the sequent calculus are necessary
for the proof of correctness in Section 4. It is easily seen that we can replace the sequent calculus
with the following rules. For any formulae ϕ, ψ, and χ we need

ϕ · (ψ ∨ χ)→ (ϕ · ψ) ∨ (ϕ · χ), (32)
(ϕ ∨ ψ) · χ→ (ϕ · χ) ∨ (ψ · χ). (33)

Moreover, we do not need the full idempotency, commutativity, and associativity of join. It is
sufficient to add the particular instance

(eX ∨ eA) ∨ eA→ eX ∨ eA (34)

to Φ[A, π]. It follows that the accessibility problem ϕ→∗ ψ, whether we can rewrite ϕ to ψ in
finitely many steps, is generally undecidable even for rewriting systems satisfying only rules (32)
and (33). A particular undecidable problem is e δ(w)X ∨ eA→∗ eX ∨ eA.

It follows easily from the previous sections that the accessibility problem remains generally
undecidable if we add any (general) rules which are subsumed by the commutativity and contrac-
tivity of product; the idempotency, commutativity, and associativity of join; the distributivity of
product over join (in the opposite direction).
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