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Abstract

We prove that the axiom expressing that the multiplicative conjunction of two formulae implies the first one of them
is redundant in the standard Hilbert-style calculi of Hájek’s basic logic BL and Esteva and Godo’s monoidal t-norm
based logic MTL. This proof does not use the axiom expressing that multiplicative conjunction is commutative, which
is already known to be redundant. Therefore both of these axioms are simultaneously redundant. We also show that
all the other axioms are independent of each other.
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1. Introduction

Hájek’s basic logic BL, developed in [5], and Esteva and Godo’s monoidal t-norm based logic MTL, see [4], are
prominent examples of formal systems of mathematical fuzzy logic. They arise as the logic of continuous and the
logic of left-continuous t-norms respectively. The standard Hilbert-style calculus of BL comes from Hájek, cf. [5].
Esteva and Godo [4] adapted his system for MTL, replacing one axiom with three new axioms.

As both calculi are almost identical, Cintula [2] proved that the axiom (A3), which expresses that multiplicative
conjunction is commutative, is provable from the other axioms in both BL and MTL. Lehmke [6] proved that the
axiom (A2), which expresses that the multiplicative conjunction of two formulae implies the first one of them, is also
provable from the other axioms.

These two results, however, do not prove the redundancy of both these axioms simultaneously, because each of
the proofs uses the other axiom. We overcome this problem by presenting a new proof of the axiom (A2), which does
not use the axiom (A3). Moreover, we show by semantic arguments that all the other axioms are independent of each
other.

All these results were obtained with the essential help of a computer—the proofs of the axiom (A2) were found
by the E prover 0.999-001 [7] and semantic counterexamples by the finite model finder Paradox 2.3 [3]. We used
a standard technique based on the encoding of propositional formulae as terms in the classical FOL. No further
exposition of these techniques is presented, because the purpose of this paper is to present the metamathematical
results in adapted and readable form; not to develop the techniques. A reader interested in the technique itself can
consult papers by Larry Wos, see [8].

This paper is organised as follows. In the following section some basic definitions are given. Section 3 contains
the proofs of the axiom (A2) in MTL and BL. In Section 4 we show that all the remaining axioms are independent of
each other.
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2. Preliminaries

In this paper we study two propositional fuzzy logics. We use standard terminology from the theory of logical
calculi, see e.g. [5]. The language of these two logics consists of implication (→), multiplicative conjunction (&)
and a constant for falsity (⊥). Moreover, the language of MTL contains additive conjunction (∧), which is a defined
connective in BL.

As we are only interested in two particular presentations of BL and MTL, we define both the logics by these
presentations. Consequently, in this paper, we understand a logic as a formal system. Moreover, we are only interested
in Hilbert-style calculi. It is worth pointing out that we consider Hilbert-style calculi in the form where the substitution
rule is implicit. Therefore, strictly speaking, these systems consist of axiom schemata, but for simplicity we talk just
about axioms.

We define a proof (a derivation) of a formula ϕ as a finite sequence of formulae such that each of its members is
an axiom or follows from some of the preceding members by modus (ponendo) ponens, and the last member of the
sequence is ϕ.

Definition 1 ([5]). We define the basic logic BL as a Hilbert-style calculus with the following formulae as axioms:

(A1) (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ)),
(A2) (ϕ & ψ)→ ϕ,

(A3) (ϕ & ψ)→ (ψ & ϕ),
(A4) (ϕ & (ϕ→ ψ))→ (ψ & (ψ→ ϕ)),

(A5a) (ϕ→ (ψ→ χ))→ ((ϕ & ψ)→ χ),
(A5b) ((ϕ & ψ)→ χ)→ (ϕ→ (ψ→ χ)),
(A6) ((ϕ→ ψ)→ χ)→ (((ψ→ ϕ)→ χ)→ χ),
(A7) ⊥ → ϕ.

The only deduction rule of BL is modus ponens

(MP) ϕ, ϕ→ ψ / ψ.

As our purpose is to prove the axiom (A2) without using the axiom (A3), we define a new system in which we
prove this statement.

Definition 2. The logic BL− is obtained by omitting the axioms (A2) and (A3) from BL.

The monoidal t-norm based logic MTL is obtained by weakening the properties of the additive conjunction which
is no longer an abbreviation for ϕ & (ϕ → ψ). Therefore we define the additive conjunction directly by three new
axioms.

Definition 3 ([4]). We obtain the monoidal t-norm based logic MTL by replacing the axiom (A4) in BL with the
following three axioms:

(A4a) (ϕ & (ϕ→ ψ))→ (ϕ ∧ ψ),
(A4b) (ϕ ∧ ψ)→ ϕ,

(A4c) (ϕ ∧ ψ)→ (ψ ∧ ϕ).

Definition 4. The logic MTL− is obtained by omitting the axioms (A2) and (A3) from MTL.

3. The provability of the axiom (A2)

In this section we prove the axiom (A2) from the other axioms, without the use of the axiom (A3). Note that we
use an easy consequence of the axiom (A1), namely for any χ, if ϕ → ψ is provable then (ψ → χ) → (ϕ → χ) is also
provable. Let us also note that we do not refer explicitly to the use of modus ponens as it is our only deduction rule.

It suffices to construct a derivation of weakening ϕ → (ψ → ϕ), because from this formula we immediately
obtain (A2) by the residuation axiom (A5a).
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3.1. MTL−

First, we prove (A2) in MTL−. Surprisingly, the proof is shorter than in BL−, because the axioms (A4a) and (A4b)
shorten the proof significantly. These formulae are provable in BL, since it is a stronger logic than MTL, but we do
not know whether it is also possible to prove them in BL−. Therefore we have to prove (A2) separately for MTL− and
BL−.

Lemma 1. The following formulae are provable in MTL−:

(a) (ϕ & (ϕ→ ψ))→ ϕ,

(b) (((ϕ→ ψ)→ ϕ)→ χ)→ (ϕ→ χ),
(c) ϕ→ (ϕ→ ϕ),
(d) ϕ→ (ψ→ ϕ).

Proof. We prove the first formula using (A4a) on (A1) which gives us ((ϕ ∧ ψ) → χ) → ((ϕ & (ϕ → ψ)) → χ). To
prove (a), we now apply (A4b).

The second formula can be proved using (A1) on

ϕ→ ((ϕ→ ψ)→ ϕ), (1)

which is an easy consequence of (a) used on (A5b).
The proof of the third formula starts by proving ((ϕ → ((ϕ → ψ) → ϕ)) → ϕ) → (ϕ → ((ϕ → ψ) → ϕ)),

which is just (1) used on itself, where ϕ = ϕ → ((ϕ → ψ) → ϕ) and ψ = ϕ. Then this formula and (b) give us
ϕ → (ϕ → ((ϕ → ψ) → ϕ)), hence we prove ((ϕ → ((ϕ → ψ) → ϕ)) → ϕ) → (ϕ → ϕ) by (A1) and hence
ϕ→ (ϕ→ ϕ) by (b).

Finally, we prove the last formula. We start by proving ((ϕ→ (ψ→ (ϕ&ψ)))→ ϕ)→ (((ϕ&ψ)→ (ϕ&ψ))→ ϕ),
which is (A5b) used on (A1) and hence ϕ→ (((ϕ&ψ)→ (ϕ&ψ))→ ϕ) by (b). Now we can substitute ϕ→ (ϕ→ ϕ)
for ϕ in the previous formula and by the application of (c) we obtain (((ϕ→ (ϕ→ ϕ))&ψ)→ ((ϕ→ (ϕ→ ϕ))&ψ))→
(ϕ → (ϕ → ϕ)), hence ((ϕ → (ϕ → ϕ)) & ψ) → (ϕ → (ϕ → ϕ)), because ((ϕ → ϕ) → ψ) → (ϕ → ψ) is provable by
using (c) on (A1). Now using (A5b) and (c) we prove ψ→ (ϕ→ (ϕ→ ϕ)), hence ((ϕ→ (ϕ→ ϕ))→ ϕ)→ (ψ→ ϕ)
by (A1) and finally ϕ→ (ψ→ ϕ) by (b).

An immediate consequence of this lemma and the axiom (A5a) is the following theorem.

Theorem 2. The axiom (A2) is provable in MTL−.

It is worth pointing out that we did not use the axioms (A4c), (A6), and (A7). Contrarily, all the other axioms are
necessary, which can be demonstrated by methods used in Section 4.

As we know from [2] that the axiom (A3) is provable from the other axioms in MTL, we immediately obtain the
following corollary.

Corollary 3. The axioms (A2) and (A3) are simultaneously redundant in MTL.

3.2. BL−

Second, we prove (A2) in BL−. As we have already pointed out, this proof is longer than the proof in MTL−.
We would like to note that although we use the axioms (A6) and (A7) to prove (A2) in BL−, these axioms are not
necessary but they shorten the proof significantly. All the other axioms are necessary.

Lemma 4. The following formulae are provable in BL−:

(a) ϕ→ ϕ,

(b) (ϕ & (ϕ→ ⊥))→ ψ,

(c) (ϕ & ψ)→ ψ,

(d) ϕ→ (ψ→ ϕ).
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Proof. We start with the proof of (a). First, we prove ((ϕ→ ϕ)&ϕ)→ ϕ by a double application of ((ϕ→ ϕ)→ (ϕ→
ϕ))→ (((ϕ→ ϕ)&ϕ)→ ϕ), which is an instance of (A5a), on a suitable instance of (A6). Hence (ϕ→ ϕ)→ (ϕ→ ϕ)
by (A5b). Again by a double application of the previous formula on a suitable instance of (A6) we prove ϕ→ ϕ.

Next, we prove (b). First, we prove ((ϕ→ ψ) & ϕ)→ ψ by (a) and (A5a). Now we prove

(ψ→ χ)→ (((ϕ→ ψ) & ϕ)→ χ) (2)

by (A1). Then (⊥ & ψ) → ϕ is proved by (A7) and (A5a). Hence ((ϕ → (⊥ & ψ)) & ϕ) → χ by (2) and (ϕ →
(⊥ & ψ)) → (ϕ → χ) by (A5b). Finally, we prove (b) by an instance of (A4) applied on the previous formula where
ϕ = ϕ & (ϕ→ ⊥), ψ = ⊥ → ϕ, and χ = ψ.

We proceed to proving the third formula. We obtain ϕ → ((ϕ → ⊥) → ψ) by (b) and (A5b), hence (((ϕ → ⊥) →
ψ) → χ) → (ϕ → χ) by (A1). From ((ϕ → ⊥) → ψ) → (⊥ → ψ), which is an immediate consequence of (A7)
and (A1), and an instance of the previous formula we prove ϕ → (⊥ → ψ). Since ϕ → (ψ → (ϕ & ψ)) is provable
by (a) and (A5b), we can easily prove (ψ→ ψ) & ((ψ→ ψ)→ (⊥ → ϕ)), hence

(⊥ → ϕ) & ((⊥ → ϕ)→ (ψ→ ψ)) (3)

by (A4). Moreover, using (χ & ϕ) → (⊥ → ϕ) we prove χ → (ϕ → (⊥ → ϕ)) by (A5b). Hence ((ϕ → (⊥ → ϕ)) →
ξ) → (χ → ξ) by (A1) and using a suitable instance of (A1) on this formula, for ξ = ((⊥ → ϕ) → η) → (ϕ → η), we
prove χ → (((⊥ → ϕ) → η) → (ϕ → η)), hence (χ & ((⊥ → ϕ) → η)) → (ϕ → η) by (A5a). Hence ϕ → (ψ → ψ)
by (3). Now (A5a) gives us (c).

To prove the last formula, we begin with ((ψ&χ)→ χ)→ (((ϕ→ (ψ&χ)) &ϕ)→ χ), which is an instance of (2).
Hence (ϕ → (ψ & χ)) → (ϕ → χ) by (c) and (A5b). Now we take an instance of the previous formula such that its
antecedent is (A4), hence (ϕ & (ϕ→ ψ))→ (ψ→ ϕ). From this we prove

(((ϕ→ ψ)→ (ψ→ ϕ))→ χ)→ (ϕ→ χ) (4)

by (A5b) and (A1). Now (ψ→ ϕ)→ (ψ→ ϕ) and (A6) give us ((ϕ→ ψ)→ (ψ→ ϕ))→ (ψ→ ϕ). We complete the
proof using this formula on (4).

Again, the immediate consequence of this lemma and the axiom (A5a) is the following theorem, which together
with the provability of the axiom (A3) in BL [2] implies the redundancy of both axioms.

Theorem 5. The axiom (A2) is provable in BL−.

Corollary 6. The axioms (A2) and (A3) are simultaneously redundant in BL.

4. The independence of the other axioms

In this section we show that (A2) and (A3) are the only axioms that can be proved from the other axioms in BL
and MTL. In other words, each of the other axioms is independent of the remaining ones. Since the standard argument
used to show that some axiom is independent of the other axioms is based on semantics, we present some necessary
notions. Let us remark that we adapt the standard notions for our very restricted purposes. A matrix M is a pair
〈A, {1}〉 where A is an algebra with the signature (→,&,∧,⊥) and 1 is the only designated element of A. The carrier
of A is a subset of {0, a, b, c, 1}. We can present such a matrix simply by giving tables for all connectives. Unless
otherwise stated, ⊥ is interpreted as 0. AnM-valuation e is a mapping from formulae to the elements of A such that e
commutes over connectives. We say that some axiom ϕ is valid inM if for anyM-valuation e the equation e(ϕ) = 1
holds. Otherwise we say that the axiom ϕ is invalid. We say that modus ponens is valid inM if e(ϕ) = e(ϕ→ ψ) = 1
implies e(ψ) = 1 for anyM-valuation e and formulae ϕ, ψ.

The whole argument reads as follows: Let us have a matrix in which all axioms and modus ponens are valid.
Therefore all provable formulae are valid in the matrix, thus any formula not valid in the matrix is not provable.

We present a matrix giving tables for all connectives. In most cases, the table can be the same for both conjunc-
tions. Moreover, only the logic-specific axioms (A4), (A4a), (A4b), and (A4c) have to be treated separately for BL
and MTL, all the other axioms can be studied for both logics at once. Let us also stress that the axioms (A2) and (A3)
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&,∧ 0 a b 1
0 0 0 0 0
a 0 0 0 0
b 0 0 0 0
1 0 a 0 1

→ 0 a b 1
0 1 1 1 1
a 1 1 a 1
b 1 1 1 1
1 a a a 1

Table 1: Truth tables for (A1)

& 0 a b 1
0 0 0 0 0
a 0 0 b b
b 0 b 0 b
1 0 b b 1

∧ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a a a
1 0 a a 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b b 1 1 1
1 0 b a 1

Table 2: Truth tables for (A5a)

are valid in all presented matrices. Therefore the independence results hold even in the (full) standard presentations
of BL and MTL.

We do not present proofs that all the remaining axioms and modus ponens are valid in a given matrix. Some cases
are trivial, but some other cases need exhaustive checking, which would make this paper much longer. An interested
reader can check all the details, e.g. by a computer program. On the other hand, we give valuations which show that
a particular axiom is invalid in a matrix and therefore independent. Let us note that an M-valuation e is uniquely
determined by its values on propositional variables. Therefore we define it by its values on ϕ, ψ, and χ.

Let us start with the axioms common to both logics.

4.1. The axiom (A1)

The matrixM is defined by Table 1. The axiom (A1) is invalid in this structure for a valuation e such that e(ϕ) = a,
e(ψ) = 0, and e(χ) = b.

4.2. The axiom (A5a)

The axiom (A5a) is invalid in the structure defined by Table 2, as shown by a valuation e satisfying e(ϕ) = b,
e(ψ) = a, and e(χ) = 0.

4.3. The axiom (A5b)

The structureM with only two elements {0, 1} is sufficient to show the independence of the axiom (A5b). Both
conjunctions have the value 0 for any pair of arguments and the implication is defined as in the classical logic. The
axiom (A5b) is invalid for a valuation e such that e(ϕ) = e(ψ) = 1 and e(χ) = 0.

4.4. The axiom (A6)

The independence of the axiom (A6), which represents the prelinearity condition, is well-known. Moreover, the
system obtained by omitting the axiom (A6) from MTL is known under many names e.g. Ono’s FLew or Höhle’s
Monoidal Logic ML.

Nevertheless, we present our standard semantic argument. The matrix is based on Table 3 and represents the well-
known five-element Heyting-algebra with two incomparable elements a, b < c. The axiom (A6) is invalid as proved
by a valuation e, where ϕ, ψ, and χ have values a, b, and c.
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&,∧ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Table 3: Truth tables for (A6)

& 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b b b 1 1
1 0 a b 1

Table 4: Truth tables for (A4)

4.5. The axiom (A7)

It is clear that the axiom (A7) is independent of the other axioms, because it is the only axiom that contains the
symbol ⊥—it is enough to interpret ⊥ as 1 and all the connectives classically. In such model, the axiom (A7) is invalid
and all the other axioms and modus ponens are evidently valid.

All the remaining axioms are logic-specific. We start with the axiom specific to BL and then proceed to the three
axioms specific to MTL.

4.6. The axiom (A4)

We do not present a table for the additive conjunction, because ϕ∧ψ is just an abbreviation for ϕ & (ϕ→ ψ). The
axiom (A4) is invalid in the matrix given by Table 4 as shown by a valuation e with e(ϕ) = a and e(ψ) = b.

4.7. The axioms (A4a), (A4b), and (A4c)

We present three matrices with two elements {0, 1}. These matrices differ only in how the additive conjunction
is defined. The multiplicative conjunction and the implication are defined as the conjunction and the implication for
classical logic. Therefore the axioms (A1)–(A3) and (A5a)–(A7) are trivially valid in these matrices.

For (A4a) we define the additive conjunction in such a way that it has value 0 for all pairs of values. The ax-
iom (A4a) is invalid as proved by e such that e(ϕ) = e(ψ) = 1.

For (A4b) we define the additive conjunction in such a way that it has value 0 only for 0 ∧ 0 and value 1 for all
other pairs of values. The axiom (A4b) is invalid as proved by e such that e(ϕ) = 0 and e(ψ) = 1.

For (A4c) we define the additive conjunction in such a way that its value equals the value of its first member
(x ∧ y = x). The axiom (A4c) is invalid as proved by valuation e such that e(ϕ) = 1 and e(ψ) = 0.

If we combine all the results of this section, we immediately obtain the following two corollaries.

Corollary 7. All the axioms but (A2) and (A3) are independent of each other in BL.

Corollary 8. All the axioms but (A2) and (A3) are independent of each other in MTL.
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5. Summary

We proved that the axiom (A2) is provable from the other axioms in BL and MTL without the use of the ax-
iom (A3), which was shown in [2] to be provable from the remaining axioms. Therefore we proved that both of these
axioms are simultaneously redundant. Moreover, we demonstrated that no other axiom has this property even in the
(full) standard presentations of BL and MTL with (A2) and (A3) and therefore all the other axioms are independent
of each other.
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pp. 28–36.

[2] P. Cintula, Short note: on the redundancy of axiom (A3) in BL and MTL, Soft Computing 9 (2005) 942–942.
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[5] P. Hájek, Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic, Kluwer, Dordercht, 1998.
[6] S. Lehmke, Fun with automated proof search in basic propositional fuzzy logic, in: P.E. Klement, R. Mesiar, E. Drobná, F. Chovanec (Eds.),
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