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Abstract. We prove that the set of formulae provable in the full Lambek calculus with the
structural rule of contraction is undecidable. In fact, we show that the positive fragment of
this logic is undecidable.

1. Introduction

Besides the cut rule, Gentzen’s sequent calculus LJ for propositional intuitionistic logic
contains other structural rules, namely the rules of contraction (c), exchange (e), left weak-
ening (i), and right weakening (o). By removing all these rules from LJ, one arrives at the
full Lambek calculus FL. More generally, every extension of FL by a subset of the rules
(c), (e), (i), and (o) defines a logic between FL and LJ. In [8] these logics are called basic
substructural logics. It is known that each of these logics has an analytic sequent calculus. In
particular, the cut rule is eliminable in all these calculi if the contraction rule is introduced
in its global variant (see [22] or [8, Chapter 4]).

Cut elimination is closely related to decidability. It is known that all basic substructural
logics are decidable except of FLc and FLco, where the former is the extension of FL by
the contraction rule and the latter is the extension of FLc by the right weakening rule. The
decidability of basic substructural logics without the contraction rule follows immediately
from the cut elimination theorem and is proved in [17]. On the other hand, such an easy
argument is not applicable for logics with the contraction rule since this rule makes the proof-
search tree infinite. Nevertheless, intuitionistic logic is decidable [9, 10] and the same holds
for the extension of FL by the exchange and contraction rules [16] (the original combinatorial
idea from the proof goes back to Kripke [18]). In contrast, we show that FLc and FLco are
the only undecidable logics among all basic substructural logics. Actually, we prove that their
common positive fragment FL+

c is undecidable.
Among known propositional substructural logics, there are not so many logics with an

undecidable set of provable formulae. One of them is the relevance logic R, which is a fragment
of the involutive distributive FL with the exchange and contraction rules. The undecidability
of its positive fragment is established in [23]. Another example is the extension of FL by
the modular law. Since the equational theory of modular lattices is undecidable [6], one can
easily extend this result to the extension of FL by the modular law, as pointed out in [13].
One should also mention the undecidability of propositional linear logic [20]. Nevertheless,
its undecidability is caused by the expressive power of exponentials, while the fragment of
linear logic without exponentials is PSPACE-complete [20].

The following paragraphs outline our undecidability proof. We start with an undecidable
problem P from [12] (see Theorem 3.1), where it is shown that the deducibility problem for
FL+

c (i.e. the question whether a formula is provable from a finite theory) is undecidable. The
problem P is formulated as a reachability question for a string rewriting system simulating
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a Minsky machine using only square-free words. This ensures that the contraction rule does
not affect the simulation of computation.

In order to isolate key ideas of the proof, we refrain from presenting a direct reduction from
the problem P into FL+

c . We instead introduce an auxiliary problem and split the reduction
into two steps.

First, Section 3.2 shows how to reduce the reachability problem for a string rewriting
system to the same problem for an atomic conditional string rewriting system, i.e. a string
rewriting system where the rules can have only atoms on the right-hand side and their usage
is restricted to specific contexts.

Second, an encoding of the reachability problem for an atomic conditional string rewriting
system into FL+

c is presented in Section 4. A set of rewriting rules is encoded as a lattice
conjunction (meet) of implications. The conditionality of rewriting rules is handled by the
lattice disjunction (join). The idea of using the lattice disjunction for similar purposes comes
from [14], where it is used for linear logic. In fact, our application of this idea was inspired
by [3].

The completeness of encoding from Section 4 is proved by a semantical method similar to
the one used in [19]. This method relies on a sound and complete algebraic semantics for FL+

c

based on a variety of residuated lattices RLc. In order not to mix different formalisms, we
opt for using an algebraic formalism throughout the paper. Actually, we prove undecidability
of the equational theory for RLc which immediately implies that FL+

c is undecidable.
Section 5 contains several comments on possible modifications of the main result, as well

as its connection to the deduction theorem.

2. Preliminaries

As was mentioned in the introduction, we show that even the positive fragment of full
Lambek calculus with the contraction rule FL+

c is undecidable. Probably the most natural
way of presenting FL+

c is in terms of a sequent calculus. Formulae are formed in a standard
way from a countable set of variables Var and a constant 1 using the following connectives:
fusion (·), two implications (\ and /), join (∨), and meet (∧). It should be noted that we
have two implications, because there are two natural ways how to obtain them in systems
where the rule of exchange is not valid. The set of all formulae is denoted by Fm. When
writing formulae, we omit some parentheses using the convention that fusion binds tighter
than implications followed by meet and join. Furthermore, we use the fact that fusion is
associative in FL+

c . Moreover, we often omit fusion completely, i.e. a formula ϕ · ψ is shortly
written as ϕψ.

A sequent is a pair Γ⇒ ϕ, where Γ is a (possibly empty) sequence of formulae and ϕ is a
formula. The elements of Γ are separated by commas as usual and the intended meaning of
these commas is fusion.

Definition 2.1. The sequent calculus for FL+
c has the following axioms and inference rules1:

(Id) ϕ⇒ ϕ
Γ1, ϕ,Γ2 ⇒ ψ ∆⇒ ϕ

(Cut)
Γ1,∆,Γ2 ⇒ ψ

1It is worth noting that we formulate the rule of contraction (c) for sequences and not only for formulae.
The rule of contraction only for formulae does not admit cut elimination. However, as we have fusion in the
language, both rules are equivalent in the presence of (Cut).
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Γ1,Γ2 ⇒ ψ
(1L)

Γ1, 1,Γ2 ⇒ ψ
(1R) ⇒ 1

Γ1, ϕ, ψ,Γ2 ⇒ χ
(·L)

Γ1, ϕ · ψ,Γ2 ⇒ χ

Γ⇒ ϕ ∆⇒ ψ
(·R)

Γ,∆⇒ ϕ · ψ

Γ1, ϕ,Γ2 ⇒ ψ ∆⇒ χ
(\L)

Γ1,∆, χ \ ϕ,Γ2 ⇒ ψ

ϕ,Γ⇒ ψ
(\R)

Γ⇒ ϕ \ ψ

Γ1, ϕ,Γ2 ⇒ ψ ∆⇒ χ
(/L)

Γ1, ϕ / χ,∆,Γ2 ⇒ ψ

Γ, ϕ⇒ ψ
(/R)

Γ⇒ ψ / ϕ

Γ, ϕ,∆⇒ χ Γ, ψ,∆⇒ χ
(∨L)

Γ, ϕ ∨ ψ,∆⇒ χ

Γ⇒ ϕi(∨R) for i = 1, 2
Γ⇒ ϕ1 ∨ ϕ2

Γ, ϕi,∆⇒ ψ
(∧L) for i = 1, 2

Γ, ϕ1 ∧ ϕ2,∆⇒ ψ

Γ⇒ ϕ Γ⇒ ψ
(∧R)

Γ⇒ ϕ ∧ ψ

Γ1,∆,∆,Γ2 ⇒ ψ
(c)

Γ1,∆,Γ2 ⇒ ψ

The provability in the sequent calculus for FL+
c is defined in the usual way—a proof is a

tree labeled by sequents with only axioms in leaves and all the other vertices are obtained
from their children by the inference rules. We say that a formula ϕ is a theorem of FL+

c if
⇒ ϕ is provable in FL+

c .
The logic FL+

c has a sound and complete algebraic semantics based on residuated lattices.
A residuated lattice A = 〈A,∧,∨, ·, \, /, 1〉 is an algebraic structure such that 〈A,∧,∨〉 is a
lattice, 〈A, ·, 1〉 is a monoid, and for all a, b, c ∈ A we have

(1) a · b ≤ c iff b ≤ a\c iff a ≤ c/b,
where ≤ is the order induced by the lattice structure of A, i.e. a ≤ b iff a ∨ b = b.

Given a residuated lattice A, an A-evaluation (or shortly evaluation if A is clear from the
context) e is a map from Fm into A preserving all the connectives, i.e. it is a homomorphism
from the formula algebra on Fm to A. An identity is a pair of formulae 〈ϕ,ψ〉 written
suggestively as ϕ = ψ. We say that an identity ϕ = ψ holds in A if for every A-evaluation e
we have e(ϕ) = e(ψ). More generally, an identity ϕ = ψ holds in a class of residuated lattices
K if it holds in every residuated lattice from K. An identity of the form ϕ ∨ ψ = ψ is shortly
denoted by ϕ ≤ ψ.

Fact 2.1. The following identities hold in the class of all residuated lattices:

• x(x\y) ≤ y,
• x(y ∨ z) = xy ∨ xz,
• (y ∨ z)x = yx ∨ zx.

Note that x ≤ y implies xz ≤ yz and zx ≤ zy by the distributivity of fusion over join.
A residuated lattice A is called square increasing if the identity x ≤ x2 holds in A. It is

well known (see e.g. [8]) that the class of square-increasing residuated lattices forms a variety
denoted by RLc, i.e. it is axiomatized by a set of identities.
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Theorem 2.2 (e.g. [8]). FL+
c is sound and complete with respect to the class of square-

increasing residuated lattices. More precisely, the sequent ψ ⇒ ϕ is provable in FL+
c iff the

identity ψ ≤ ϕ holds in RLc.

Since the sequents ⇒ ϕ and 1⇒ ϕ are equivalent in terms of provability in FL+
c , it follows

that the sequent ⇒ ϕ is provable in FL+
c iff the identity 1 ≤ ϕ holds in RLc. Furthermore,

observe that by (1) an identity ϕ ≤ ψ holds in RLc iff 1 ≤ ϕ\ψ holds there. Consequently,
if we prove that the set of identities of the form ϕ ≤ ψ valid in RLc is undecidable, then we
obtain the same for the set of provable formulae in FL+

c .
We opt for using algebraic semantics in our proofs because algebraic notation in this case

seems to be more compact. Nevertheless, this choice is not essential and has no influence on
the construction itself. Moreover, a reader preferring e.g. proof-theoretical notions can adapt
even all the proofs, because the main ideas in them remain the very same.

2.1. Residuated frames. In the following paragraphs, we recall residuated frames which
will be useful in the construction of a suitable countermodel in the proof of completeness of
our encoding. We start with an important example of a residuated lattice called the powerset
monoid.

Example 2.1 (see e.g. [8]). Let M = 〈M, ·, 1〉 be a monoid. The powerset monoid is the
residuated lattice P(M) = 〈P(M),∩,∪, ·, \, /, {1}〉 defined on the powerset of M , where for
X,Y, Z ⊆M the operations are defined as follows:

X · Y = {x · y ∈M | x ∈ X, y ∈ X },
X\Z = { y ∈M | X · {y} ⊆ Z },
Z/Y = {x ∈M | {x} · Y ⊆ Z }.

Note that 1 ∈ X\Z iff X ⊆ Z.

Other examples of residuated lattices can be obtained from the powerset monoid P(M) by
considering a suitable closure operator on the poset 〈P(M),⊆〉. Recall that a closure operator
on 〈P(M),⊆〉 is a map γ : P(M)→ P(M) such that for all X,Y ⊆M we have

• X ⊆ γ(X),
• γ(γ(X)) = γ(X), and
• X ⊆ Y implies γ(X) ⊆ γ(Y ).

A subset X ⊆ M is said to be γ-closed if X = γ(X). The set of all γ-closed subsets of M
is denoted P(M)γ . Recall that 〈P(M)γ ,∩,∪γ〉 forms a complete lattice where X ∪γ Y =
γ(X ∪ Y ).

A subset B ⊆ P(M)γ of γ-closed sets is said to be a basis for γ if every X ∈ P(M)γ can be
expressed as the intersection of all the basis elements above X, i.e. X =

⋂
{B ∈ B | X ⊆ B }.

Given a basis B for the closure operator γ, the equivalence

(2) X ⊆ γ(Y ) iff Y ⊆ B implies X ⊆ B for all B ∈ B

holds for all X,Y ⊆M .
It is well known that every closure operator on 〈P(M),⊆〉 is induced by a binary relation

N ⊆ M × T for some set T (see e.g. [5, 8]). Given such a relation N ⊆ M × T , one can
introduce the following two maps which define a Galois connection between 〈P(M),⊆〉 and
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〈P(T ),⊆〉:
XB = { b ∈ T | (∀x ∈ X)(x N b) },
Y C = { a ∈M | (∀y ∈ Y )(a N y) }.

Lemma 2.3 (see e.g. [5, 8]). The maps C and B have the following properties:

• X ⊆ Y implies Y B ⊆ XB for X,Y ⊆M .
• X ⊆ Y implies Y C ⊆ XC for X,Y ⊆ T .
• ∅C = M and ∅B = T .
• XBCB = XB and Y CBC = Y C for X ⊆M and Y ⊆ T .
• The map γN : P(M) → P(M) defined by γN (X) = XBC is a closure operator on
〈P(M),⊆〉.
• The collection { {b}C | b ∈ T } forms a basis for γN .

Let x1, . . . , xn ∈ M . To shorten the notation, we will write γN{x1, . . . , xn} instead of
γN ({x1, . . . , xn}).

Assume that we have a closure operator γ on the powerset monoid P(M) described in
Example 2.1. If γ satisfies γ(γ(X) · γ(Y )) = γ(X · Y ) for all X,Y ⊆ M then γ is called a
nucleus. In this case one can define a residuated lattice on γ-closed sets. The resulting algebra
P(M)γ = 〈P(M)γ ,∩,∪γ , ·γ , \, /, γ{1}〉, where X ∪γ Y = γ(X ∪ Y ) and X ·γ Y = γ(X · Y ), is

a residuated lattice (see e.g. [8]).
We have mentioned above that every binary relation N ⊆M×T induces a closure operator

γN on 〈P(M),⊆〉. The following definition gives a sufficient condition on N for γN to be in
addition a nucleus.

Definition 2.2 ([7]). A residuated frame is a two-sorted structure W = 〈M, T,N〉 where
M = 〈M, ·, 1〉 is a monoid, T is a set, and N ⊆ M × T is a nuclear relation, i.e. there exist
operations 
 : M × T → T and � : T ×M → T such that

x · y N z iff y N x
z iff x N z�y.

Given a residuated frame W = 〈M, T,N〉, the induced closure operator γN is a nucleus on
the powerset monoid P(M) (see [7]) indeed. Thus one can define a dual algebra W+ of the
residuated frame W by letting W+ to be the residuated lattice P(M)γN .

Now we present an example of a residuated frame associated with a language L over an
alphabet Σ and its dual algebra. This example will be of use later. Given an alphabet Σ,
the set of all words (resp. non-empty words) over Σ is denoted Σ∗ (resp. Σ+). Recall that Σ∗

together with the concatenation of words and the empty word ε forms the free Σ-generated
monoid.

Example 2.2. Let Σ be an alphabet and L ⊆ Σ∗ a language. Consider a structure WL =
〈Σ∗,Σ∗ × Σ∗, N〉 where the binary relation N ⊆ Σ∗ × (Σ∗ × Σ∗) is defined by

x N 〈u, v〉 iff uxv ∈ L.
It follows that N is nuclear, since for all x, y, u, v ∈ Σ∗ we have

xy N 〈u, v〉 iff y N 〈ux, v〉 iff x N 〈u, yv〉 iff uxyv ∈ L.
Consequently, WL forms a residuated frame and the dual algebra

W+
L = 〈W+

L ,∩,∪γN , ·γN , \, /, γN{ε}〉
is a residuated lattice where W+

L = P(Σ∗)γN , X∪γN Y = γN (X∪Y ), and X ·γN Y = γN (X ·Y ).
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In what follows, we assume that Σ ⊆ Var. Hence Σ∗ ⊆ Fm if we identify a word
a1a2 . . . an ∈ Σ∗ with the formula a1 · a2 · · · · · an (the fusion of atoms a1, . . . , an).

Lemma 2.4. Let e : Fm → W+ be a W+
L -evaluation, a1, . . . , an ∈ Σ, and w = a1a2 . . . an.

Assume that e(ai) = γN (Xi) and Xi ⊆ Σ∗ for i = 1, . . . , n. Then e(w) = γN (X1 ·X2 · · · · ·Xn).
In particular, if Xi = {ai} for i = 1, . . . , n then e(w) = γN{w}.

Proof. By the definition of a nucleus we have

γN (X) ·γN γN (Y ) = γN (γN (X) · γN (Y )) = γN (X · Y ).

This can be easily generalized for arbitrarily many subsets X1, . . . , Xn ⊆ Σ∗ and hence

γN (X1) ·γN · · · ·γN γN (Xn) = γN (X1 · · ·Xn).

Therefore the lemma follows since

e(w) = e(a1) ·γN · · · ·γN e(an) = γN (X1) ·γN · · · ·γN γN (Xn) = γN (X1 · · ·Xn).

�

Certainly, we are interested in languages L such that W+
L is square increasing. We say

that a language L over an alphabet Σ is closed under the contraction rule if uxxv ∈ L implies
uxv ∈ L for all u, x, v ∈ Σ∗.

Lemma 2.5. If L ⊆ Σ∗ is closed under the contraction rule then W+
L ∈ RLc.

Proof. Let X ∈ W+
L , i.e. X = γN (X). It suffices to show that (X ·X)B ⊆ XB, for if this is

proved, Lemma 2.3 gives

X = XBC ⊆ (X ·X)BC = X ·γN X.

Assume that 〈u, v〉 ∈ (X ·X)B and x ∈ X. Hence xx ∈ X ·X and so uxxv ∈ L. Since L is
closed under the contraction rule, we have uxv ∈ L. Thus 〈u, v〉 ∈ XB. �

2.2. Regular languages. In what follows, we will need to encode regular languages closed
under the contraction rule into the equational theory of RLc. In this section we will show
how to do it. It also affords a good illustration of how to use residuated frames in order to
prove a completeness of an encoding.

Given an alphabet Σ, the set of all regular languages over Σ is denoted Reg(Σ). Recall
that every regular language can be captured by a right-linear context-free grammar (see [11]).
Let G = 〈V,Σ, P, S〉 be a right-linear context-free grammar with a finite set of variables V
(non-terminals), a finite set of terminals Σ, a start variable S, and a finite set of production
rules P of the form A → wB or A → w for some variables A,B ∈ V and w ∈ Σ∗. The
derivation relation→∗G of G is defined in the usual way (see e.g. [11]). For every non-terminal
A ∈ V we define its language L(A) = {w ∈ Σ∗ | A →∗G w }. In particular, L(S) is the
language generated by G. Until further notice, we assume that V ∪ Σ ⊆ Var.

We define a finite set of formulae

∆G = {wB\A | A→ wB ∈ P } ∪ {w\A | A→ w ∈ P }.

Then we define a formula δG as the meet of 1 and all the formulae in ∆G, i.e. δG = 1∧
∧

∆G.
Now we can encode the membership of a word w ∈ Σ∗ in the regular language L = L(S)

generated by G via the identity wδG ≤ S. The following lemma shows that this encoding is
sound.
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Lemma 2.6. Let G = 〈V,Σ, P, S〉 be a right-linear context-free grammar generating a regular
language L and w ∈ (V ∪ Σ)∗. If S →∗G w then wδG ≤ S holds in RLc. In particular, if
w ∈ L = L(S) then wδG ≤ S holds in RLc.

Proof. The claim is proved by induction on the number of steps in the derivation of w using
the grammar G. Clearly, SδG ≤ S holds in RLc since δG ≤ 1. Assume that w is derived by
a production rule A → uB ∈ P , i.e. w = w′uB. Hence uB\A ∈ ∆G and so δG ≤ uB\A. By
the induction hypothesis, we know that w′AδG ≤ S holds in RLc. It follows that

wδG ≤ wδ2
G ≤ w(uB\A)δG = w′uB(uB\A)δG ≤ w′AδG ≤ S.

The case for a production rule of the form A→ u is completely analogous. �

We prove the completeness of our encoding via the residuated frame WL (see Example 2.2).
We start with a general lemma.

Lemma 2.7. Let G = 〈V,Σ, P, S〉 be a right-linear context-free grammar and W = 〈Σ∗, T,N〉
a residuated frame. Given a W+-evaluation e : Fm → W+ suppose that e(a) = γN{a} for
a ∈ Σ and e(A) = γN (L(A)) for A ∈ V . Then ε ∈ e(δG).

Proof. We have to show that ε ∈ e(δG) = e(1) ∩
⋂
ϕ∈∆G

e(ϕ). Since ε ∈ γN{ε} = e(1), it

suffices to show that for every ϕ ∈ ∆G we have ε ∈ e(ϕ). In other words, we need to show
that e(wB) ⊆ e(A) (resp. e(w) ⊆ e(A)) if ϕ = wB\A (resp. ϕ = w\A).

Assume that ϕ = wB\A (the proof for ϕ = w\A is analogous). Hence the production
rule A → wB belongs to P . Let x ∈ L(B). Hence A →G wB →∗G wx, i.e. wx ∈ L(A).
Consequently, we have {w} · L(B) ⊆ L(A). Thus Lemma 2.4 implies

e(wB) = γN ({w} · L(B)) ⊆ γN (L(A)) = e(A).

�

Assume that the regular language L generated by G is closed under the contraction rule
and wδG ≤ S holds in RLc. Hence W+

L belongs to RLc by Lemma 2.5. Thus wδG ≤ S holds

in W+
L . Consider the evaluation from Lemma 2.7. It follows that e(wδG) = γN (e(w)·e(δG)) ⊆

e(S) = γN{L}. Since ε ∈ e(δG) by Lemma 2.7 and w ∈ γN{w} = e(w) by Lemma 2.4, we
obtain w ∈ e(w) · e(δG) ⊆ e(wδG) ⊆ γN{L}. In order to show that w ∈ L, it suffices to show
that L is γN -closed. To see this observe that L = {〈ε, ε〉}C. Thus L is a member of the basis
for γN (see Lemma 2.3).

Theorem 2.8. Let L be a regular language closed under the contraction rule, G = 〈V,Σ, P, S〉
its generating right-linear context-free grammar, and δG = 1∧

∧
∆G. Then w ∈ L iff wδG ≤ S

holds in RLc.

3. SRSs and atomic conditional SRSs

A string rewriting system (shortly SRS) is a tuple 〈Σ, R〉, where Σ is an alphabet and
R ⊆ Σ∗ × Σ∗ is a binary relation. A member 〈x, y〉 of R is called a (rewriting) rule and we
write it x y.

A single-step reduction relation  R ⊆ Σ∗ × Σ∗ is defined for any w,w1 ∈ Σ∗ as w R w1

iff there are words x, y, u, v ∈ Σ∗ such that w = uxv, w1 = uyv, and x y ∈ R. A reduction
relation  ∗R is the reflexive transitive closure of  R. For further details see e.g. [1].

Given a word w0 ∈ Σ∗, we define a language corresponding to 〈Σ, R〉 and w0 by

L(w0) = {w ∈ Σ∗ | w ∗R w0 }.
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The problem to decide whether a word w ∈ Σ∗ belongs to L(w0) is sometimes called the
reachability problem (for a fixed word w0).

It is easy to construct an SRSs 〈Σ, R〉 and w0 ∈ Σ+ such that L(w0) is undecidable. A
common way how to obtain such a rewriting system is to encode a Minsky machine (two-
counter machine) with an undecidable set of accepting configurations. These machines have
a finite set of states and therefore their configuration can be completely described by a triplet
〈i,m, n〉 of natural numbers, which says that the machine is in the state i and counters have
values m and n. A possible way how to encode such a triplet by a word is

Aamqia
nB,

where A,B are stoppers and ak is the sequence of k letters a. One can also capture operations
of Minsky machines by rewriting rules. It follows that the language L(Aq0B) is undecidable—a
Minsky machine accepts a configuration 〈i,m, n〉 if its computation ends in 〈0, 0, 0〉. However,
in our case the problem is that L(Aq0B) is not closed under the contraction rule. Therefore
such a straightforward representation of counters is impossible.

Nevertheless, we can represent counters by square-free words, i.e. do not contain uu as a
subword. It is well known (see e.g. [21]) that if we have a morphism over the alphabet {a, b, c}
defined by

h(a) = abc h(b) = ac h(c) = b

then hm(a) is square free for any m. Hence we can represent a state of our machine by

Ahm(a)BqiCh
n(a)D.

In this way we can obtain a rewriting system such that the language L(AaBq0CaD) is unde-
cidable and consists only of square-free words and therefore it is closed under the contraction
rule. This coding is inspired by [15, Section 7.2.5] and the complete construction is described
in [12, Section 4], where the word problem for RLc and therefore the deducibility problem
for FL+

c are proved to be undecidable.

Theorem 3.1 ([12]). There is an SRS 〈Σ, R〉 and w0 ∈ Σ+ such that L(w0) is undecidable. In
addition, L(w0) consists only of square-free words, i.e. L(w0) is closed under the contraction
rule. Moreover, the rules contain only square-free words.

It is worth pointing out that R from the previous theorem contains only non-empty words,
i.e. R ⊆ Σ+ × Σ+, and hence if w ∗R w0 then w ∈ Σ+ since w0 ∈ Σ+. Clearly, empty words
play no essential role in this SRS,2 the fact to be used later.

In this paper we will present an encoding of the reduction relation ∗R for such a rewriting
system into the equational theory of RLc.

3.1. A näıve way of encoding. Theorem 3.1 gives us an SRS 〈Σ, R〉 and w0 ∈ Σ+ such
that it is undecidable whether w ∗R w0 for w ∈ Σ+. Algebraically we would like to encode
this problem as the validity of w ≤ w0 modulo the given set of rules R. The problem is how
to represent the set of rules R. Now we are going to present a näıve way how to do that.
Although it does not work, we will elaborate on it later on.

The most natural way is to represent a rule x y ∈ R as an implication, e.g. x\y. The
idea is as follows. Assume we have uxv, uyv ∈ Σ∗. We know x(x\y) ≤ y (see Fact 2.1) and

2For these reasons even the definition of SRSs in [12] allows only non-empty words.
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hence ux(x\y)v ≤ uyv. Moreover, as we have contraction, it holds that

ux(x\y)v ≤ ux(x\y)(x\y)v ≤ uy(x\y)v.

This shows how to represent a rewriting rule, but we can easily generalize this to the whole
set R using meet. Let θ =

∧
x y∈R(x\y) then in the previous example we have

uxθv ≤ uxθθv ≤ ux(x\y)θv ≤ uyθv.

However, such a straightforward representation fails. Assume also z  xv ∈ R. We have
uz R uxv R uyv. Hence we would like to show that uzθ ≤ uxθv ≤ uyθv, but the previous
technique does not work. It is not enough that z\xv is in θ, because we would need z\xθv to
be in θ, which is obviously impossible since it cannot contain itself.

Obviously, this is an essential problem. If all x y ∈ R were such that y is only a letter,
i.e. y ∈ Σ, then this would work, but for obvious reasons there is no such SRS satisfying
Theorem 3.1. However, it is possible to define a modification of SRSs (Section 3.2) such that
the näıve way of encoding will be applicable on these modified systems (Section 4).

3.2. Conditional string rewriting systems. To overcome the problem with the näıve
encoding, we introduce a certain modification of string rewriting systems, which we call
conditional SRSs. A conditional string rewriting system (or CSRS) is a tuple 〈Σ, R〉, where
Σ is an alphabet and R ⊆ Σ∗ ×Σ∗ ×Reg(Σ)×Reg(Σ) is a relation. A member 〈x, y, L`, Lr〉
of R consists of a rewriting rule x y and two regular languages L`, Lr and expresses the
fact that the rule x y can be used only in a context restricted by the languages L`, Lr.
We denote the tuple 〈x, y, L`, Lr〉 more suggestively 〈x y, L`, Lr〉. A single-step reduction
relation  R ⊆ Σ∗ × Σ∗ is defined for any w,w1 ∈ Σ∗ by

w R w1 iff there are a rule 〈x y, L`, Lr〉 ∈ R, and words u ∈ L` and v ∈ Lr such that
w = uxv and w1 = uyv.

A reduction relation  ∗R is the reflexive transitive closure of  R.
Note that similar rewriting systems were considered in the literature. For instance, Chot-

tin in [2] defined so-called controlled string rewriting systems where only left contexts are
restricted by regular languages.

A CSRS is said to be atomic if all its rules have atomic right-hand sides, i.e. if for every
〈x y, L`, Lr〉 in R we have y ∈ Σ.

In the rest of this section we are going to show that every SRS 〈Σ, R〉, which has R ⊆
Σ∗×Σ+,3 can be simulated by an atomic CSRS. More precisely, assume that we have another
two copies of Σ denoted Σ′ = { a′ | a ∈ Σ } and Σ′′ = { a′′ | a ∈ Σ } such that Σ, Σ′, and
Σ′′ are disjoint. We will prove that there is an atomic CSRS 〈Σ ∪ Σ′ ∪ Σ′′, R′〉 such that for
every w,w0 ∈ Σ∗ we have w ∗R w0 iff w ∗R′ w0.

Clearly, every rule x a in R with an atomic right-hand side can be simulated by the
atomic conditional rule 〈x a,Σ∗,Σ∗〉. Every non-atomic rule x a1 . . . an from R, where

3This assumption is useful for simplifying the construction since the SRS from Theorem 3.1 satisfies it.
However, we could extend the construction even to rules of the form x ε. Roughly speaking, it would suffice
to allow empty words in the definition of atomic CSRSs and handle such rules similarly to atomic rules.
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n ≥ 2 and a1, . . . , an ∈ Σ, is simulated by the following atomic conditional rules:

〈ε a′′i ,Σ
∗(Σ′′)∗,Σ∗〉 for i ∈ {2, . . . , n},(3)

〈x a′1,Σ
∗, a′′2 . . . a

′′
nΣ∗〉,(4)

〈a′′i  ai,Σ
∗Σ′(Σ′′)∗,Σ∗〉 for i ∈ {2, . . . , n},(5)

〈a′1 a1,Σ
∗,Σ∗〉.(6)

Lemma 3.2. Let w,w0 ∈ Σ∗. Then w ∗R w0 implies w ∗R′ w0.

Proof. By induction on the length of derivation. The simulation of a rule x a with an atomic
right-hand side is obvious. Let x a1 . . . an be a rule in R having a non-atomic right-hand
side. The rewriting step uxv R ua1 . . . anv for u, v ∈ Σ∗ is simulated as follows:

uxv R′ uxa
′′
2v by (3)

 ∗R′ uxa
′′
2 . . . a

′′
nv by (3)

 R′ ua
′
1a
′′
2 . . . a

′′
nv by (4)

 ∗R′ ua
′
1a2 . . . anv by (5)

 R′ ua1a2 . . . anv by (6).

�

For the converse direction we need to interpret the auxiliary words containing symbols from
Σ′ and Σ′′ back in Σ∗. For this purpose we define two monoid homomorphisms

h1 : (Σ ∪ Σ′ ∪ Σ′′)∗ → Σ∗ and h2 : (Σ ∪ Σ′′)∗ → Σ∗

respectively by

h1(a) = h1(a′) = h1(a′′) = a and h2(a) = a, h2(a′′) = ε

for all a ∈ Σ.
Since the domains of h1 and h2 are the free monoids, the above definitions extend uniquely

to the whole domains. Then we merge the above homomorphisms together and define a
mapping h : (Σ ∪ Σ′ ∪ Σ′′)∗ → Σ∗ by

h(w) =

{
h2(w) if w ∈ (Σ ∪ Σ′′)∗,

h1(w) otherwise, i.e. w contains a letter from Σ′.

Note that h(w) = h2(w) = w for w ∈ Σ∗.

Lemma 3.3. If w ∗R′ w0 then h(w) ∗R h(w0) for w,w0 ∈ (Σ ∪ Σ′ ∪ Σ′′)∗. In particular,
w ∗R′ w0 implies w ∗R w0 for w,w0 ∈ Σ∗.

Proof. By induction on the length of derivation. Assume that w  R′ w1  ∗R′ w0. By the
induction hypothesis, we have h(w1) ∗R h(w0). If w = uxv, w1 = uav for u, v, x ∈ Σ∗, a ∈ Σ,
and 〈x a,Σ∗,Σ∗〉 ∈ R′ then x a ∈ R and the lemma holds trivially. Assume that the rule
from R′ used in w R′ w1 is among the rules (3)–(6) corresponding to a rule x a1 . . . an in
R. The proof splits into two cases.

First, suppose that w ∈ (Σ∪Σ′′)∗. Hence h(w) = h2(w). Note that only the rule (3) or (4)
can be applied to w. If (3) is applied then w = uv and w1 = ua′′i v for some u ∈ Σ∗(Σ′′)∗,
v ∈ Σ∗, and i ∈ {2, . . . , n}. Thus w1 ∈ (Σ ∪ Σ′′)∗ and we have

h(w1) = h2(w1) = h2(ua′′i v) = h2(uv) = h(w).
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Therefore h(w) ∗R h(w1) by reflexivity.
If (4) is applied then w = uxa′′2 . . . a

′′
nv and w1 = ua′1a

′′
2 . . . a

′′
nv for some u, v, x ∈ Σ∗. Hence

h(w) = h2(w) = h2(uxa′′2 . . . a
′′
nv) = uxv

and

h(w1) = h1(ua′1a
′′
2 . . . a

′′
nv) = ua1a2 . . . anv.

Consequently, we have h(w) = uxv R ua1a2 . . . anv = h(w1).
Second, suppose that w 6∈ (Σ ∪ Σ′′)∗, i.e. w contains a letter a′ ∈ Σ′. Hence h(w) = h1(w)

and only the rule (5) or (6) can be applied to w. If (5) is applied then w = ua′z′′a′′i v and
w1 = ua′z′′aiv for some u, v ∈ Σ∗, a′ ∈ Σ′, z′′ ∈ (Σ′′)∗, and i ∈ {2, . . . , n}. This gives

h(w) = h1(w) = h1(ua′z′′a′′i v) = h1(ua′z′′)aih1(v) = h1(ua′z′′aiv) = h(w1)

and so h(w) ∗R h(w1).
Finally, if (6) is applied then w = ua′1v and w1 = ua1v for some u, v ∈ Σ∗. We thus get

h(w) = h1(w) = ua1v = h2(w1) = h(w1) and so h(w) ∗R h(w1). �

Assume that the language L(w0) corresponding to the original SRS 〈Σ, R〉 consists of
square-free words only. The next lemma shows that the language

L′(w0) = {w ∈ (Σ ∪ Σ′ ∪ Σ′′)∗ | w ∗R′ w0 }

associated with the atomic CSRS 〈Σ ∪ Σ′ ∪ Σ′′, R′〉 also contains only square-free words.

Lemma 3.4. The language L′(w0) ⊆ (Σ ∪ Σ′ ∪ Σ′′)∗ contains only square-free words.

Proof. Let w ∈ L′(w0). We prove the lemma by induction on the length of derivation. The
base case is easy since w0 ∈ L(w0) is a square-free word. Suppose that w R′ w1 ∗R′ w0. By
the induction hypothesis, w1 is square free. We distinguish five cases according to the rule
used in w R′ w1. Before that note the following general fact. Since w ∈ L′(w0), we have
h(w) ∗R h(w0) = w0 by Lemma 3.3. Hence h(w) ∈ L(w0).

If a rule 〈x a,Σ∗,Σ∗〉 ∈ R′ corresponding to an atomic rule x a ∈ R is used then
w ∈ Σ∗. Consequently, w = h(w) ∈ L(w0) and L(w0) contains only square-free words.

Assume that the rule from R′ used in w R′ w1 is among the rules (3)–(6) corresponding
to a rule x a1 . . . an in R.

If (3) is used then w = uu′′v and w1 = uu′′a′′i v for u, v ∈ Σ∗ and u′′ ∈ (Σ′′)∗. Since u′′ is
a subword of w1, it follows that u′′ is square free. If u′′ 6= ε then w is square free, because
otherwise u or v would contain a square, which contradicts w1 being square free. If w = uv
then w = h(w) ∈ L(w0) and so it is square free.

If (4) is used then w = uxa′′2 . . . a
′′
nv and w1 = ua′1a

′′
2 . . . a

′′
nv for some u, v ∈ Σ∗. Since w1

is square free, the same holds for u and v. If w contained a square then it would have to be
a subword of ux. Since h(w) = h2(w) = uxv ∈ L(w0), uxv is square free. Thus ux is square
free as well, a contradiction.

If (5) or (6) is used then w contains a letter from Σ′. Thus h(w) = h1(w). Suppose that
w = uzzv for some u, z, v ∈ (Σ ∪ Σ′ ∪ Σ′′)∗. Hence

h(w) = h1(uzzv) = h1(u)h1(z)h1(z)h1(v) ∈ L(w0).

Since L(w0) contains only square-free words, we have h1(z) = ε. Thus z = ε since h−1
1 (ε) =

{ε}. Consequently, w = uzzv = uv. �
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It is easy to see that the conditional languages Σ∗, Σ∗(Σ′′)∗, and Σ∗Σ′(Σ′′)∗ are closed
under the contraction rule. Also the last conditional language a′′2 . . . a

′′
nΣ∗ is closed under the

contraction rule because the right-hand sides of all rules in R are square free (see Theorem 3.1).
Summarizing, we have the following theorem.

Theorem 3.5. There is an atomic CSRS 〈Σ, R〉 and w0 ∈ Σ+ such that the corresponding
language L(w0) is undecidable and consists only of square-free words. Moreover, the condi-
tional regular languages are closed under the contraction rule.

4. Atomic conditional SRSs and RLc
In this section we show how to encode an atomic CSRS into the equational theory of RLc.

Let 〈Σ, R〉 be the atomic CSRS from Theorem 3.5 and w0 ∈ Σ+ such that the language
L(w0) = {w ∈ Σ+ | w ∗R w0 } consists only of square-free words (i.e. it is closed under the
contraction rule) and is undecidable. Also conditional languages of every rule in R are closed
under the contraction rule.

First, we describe the conditional contexts in our atomic CSRS by a right-linear context-
free grammar. We can index the members of R by an index set I, i.e. R = {Ri | i ∈
I and Ri is a rule }. Define an extended alphabet Σe = Σ ∪ { ri | i ∈ I }, where ri are fresh
variables. Of course, we assume that Σe ⊆ Var. For every rule Ri = 〈x a, L`, Lr〉, where
x ∈ Σ∗ and a ∈ Σ, define a regular language Li = L`riLr. Note that the languages Li are
pairwise disjoint due to the pairwise different symbols ri and closed under the contraction
rule. Finally, we define a regular language LAux =

⋃
i∈I Li, which is clearly closed under

the contraction rule. Since LAux is regular, there is a right-linear context-free grammar G
generating LAux. Consider the formula δG = 1∧

∧
∆G such that wδG ≤ S holds in RLc iff w

belongs to LAux (see Theorem 2.8), which means w = uriv for some i ∈ I, Ri = 〈x a, L`, Lr〉,
u ∈ L`, and v ∈ Lr.

Second, we can combine this with the näıve way of encoding rules from Section 3.1. As
we have an atomic CSRS, which means only letters can occur on the right-hand side of
rewriting rules, the main obstacle disappeared, cf. Section 3.1. Moreover, we have shown how
to describe the conditional contexts using the grammar G and hence δG. Now we can modify
the definition of θ from Section 3.1 in the following way.

For every rule Ri = 〈x a, L`, Lr〉 in R, we define a formula θi = x\(a∨ ri). Furthermore,
we extend this for all the rules by defining a formula θ = 1∧

∧
i∈I θi. Note that θ ≤ θi for all

i ∈ I and θ ≤ 1. Hence θ ≤ θ2 ≤ 1 · θ = θ.
Assume we have uxv, uav ∈ Σ∗ and Ri = 〈x a, L`, Lr〉 ∈ R. It is now impossible to show

uxθv ≤ uaθv as in Section 3.1, because θi contains ri. This is by purpose—the conditionality
of rewriting must be taken into account. Namely, uriv belongs to LAux only if u ∈ L` and
v ∈ Lr. This gives us

uriθvδG ≤ urivδG ≤ S ≤ uaθv ∨ S,
where urivδG ≤ S certifies that we rewrite in the correct context. Moreover, using δG ≤ 1 we
know

uaθvδG ≤ uaθv ≤ uaθv ∨ S.
Hence we can combine these two things together using join and distributivity from Fact 2.1
and so

u(a ∨ ri)θvδG = uaθvδG ∨ uriθvδG ≤ uaθv ∨ S.
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We are now in a position to simulate the rewriting step x a of our atomic CSRS using the
formula θi = x\(a ∨ ri). Since ux(x\(a ∨ ri))θvδG ≤ u(a ∨ ri)θvδG by Fact 2.1, we obtain

uxθvδG ≤ uxθ2vδG ≤ uxθiθvδG = ux(x\(a ∨ ri))θvδG ≤ u(a ∨ ri)θvδG ≤ uaθv ∨ S.
It is clear that we need the formula θ to be spread everywhere along a word if we want to

simulate an arbitrary rewriting step. For this reason, given a non-empty word w = a1 . . . an
such that all ai are letters, we define wθ = a1θa2θ . . . anθ.

4 Observe that wθ ≤ w, wθ ≤ wθθ,
and (uv)θ = uθvθ hold for all non-empty words u, v, and w.

The following lemma shows in full details that the outlined construction can be used to
describe atomic CSRSs in the language of RLc.

Lemma 4.1 (Soundness). Let w ∈ L(w0). Then wθδG ≤ w0 ∨ S.

Proof. By induction on the length of derivation. The base case is obvious since wθ0 ≤ w0 and
δG ≤ 1. Hence wθ0δG ≤ w0 ≤ w0 ∨ S. Assume that w R w1 by a rule Ri = 〈x a, L`, Lr〉
and w1 ∗R w0. By the induction hypothesis, we have wθ1δG ≤ w0 ∨ S. Furthermore, we have
w = uxv and w1 = uav such that u ∈ L` and v ∈ Lr. We know that

wθ = uθxθvθ ≤ uθxθθvθ ≤ uθxθvθ ≤ uθxθ2vθ ≤ uθx(x\(a ∨ ri))θvθ ≤

≤ uθ(a ∨ ri)θvθ = uθaθvθ ∨ uθriθvθ = (uav)θ ∨ (uriv)θ ≤ wθ1 ∨ uriv.
Observe that uriv ∈ Li. Thus urivδG ≤ S by Theorem 2.8. Consequently,

wθδG ≤ (wθ1 ∨ uriv)δG = wθ1δG ∨ urivδG ≤ w0 ∨ S.
�

It remains to prove the opposite direction. Consider the residuated frame WL(w0)∪LAux
=

〈Σ∗e,Σ∗e × Σ∗e, N〉 where
z N 〈u, v〉 iff uzv ∈ L(w0) ∪ LAux.

Hence W+
L(w0)∪LAux

is a residuated lattice. Moreover, W+
L(w0)∪LAux

∈ RLc by Lemma 2.5

because L(w0) ∪ LAux is closed under the contraction rule by Theorem 3.5.
Assume that wθδG ≤ w0 ∨ S holds in RLc for some w ∈ Σ+. We want to show that

w ∈ L(w0). Since the inequality wθδG ≤ w0 ∨S holds, we have e(wθδG) ⊆ e(w0 ∨S) for every
W+

L(w0)∪LAux
-evaluation e : Fm→W+

L(w0)∪LAux
. Let e be the evaluation defined in Lemma 2.7,

i.e. e(a) = γN{a} for every a ∈ Σe and e(A) = γN (L(A)) for every non-terminal from the
grammar G generating the language LAux = L(S). Therefore e(u) = γN{u} for every word
u ∈ Σ∗ by Lemma 2.4. Furthermore, we have

e(w0 ∨ S) = γN (γN{w0} ∪ γN (L(S))) = γN ({w0} ∪ LAux).

Since 〈ε, ε〉 ∈ ({w0} ∪ LAux)
B, we have by Lemma 2.3 that

γN ({w0} ∪ LAux) ⊆ {〈ε, ε〉}C = L(w0) ∪ LAux.

Thus we know that the words in e(wθδG) = γN (e(wθ) · e(δG)) belong to L(w0) ∪ LAux.

Lemma 4.2. It holds ε ∈ e(θi) for all i ∈ I. Consequently, ε ∈ e(θ) = γN{ε} ∩
⋂
i∈I e(θi).

4Note that for our atomic CSRS 〈Σ, R〉 from Theorem 3.5 there is no need to define εθ because ε never
occurs if we start rewriting from a non-empty word w ∈ Σ+. In general, this need not be the case, but even
then we could ensure such behaviour by expressing w ∗R w0 equivalently as bw ∗R bw0, where b is a fresh
letter.
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Proof. Consider the formula θi = x\(a∨ ri) corresponding to a rule Ri = 〈x a, L`, Lr〉 ∈ R.
It suffices to check that

γN{x} = e(x) ⊆ e(a ∨ ri) = γN (γN{a} ∪ γN{ri}) = γN{a, ri}.
Using the basis for γN (see Lemma 2.3) and (2), we have to show that {a, ri} ⊆ {〈u, v〉}C
implies x ∈ {〈u, v〉}C. Assume that uav, uriv ∈ L(w0) ∪ LAux. Hence uav ∈ L(w0) and
uriv ∈ Li ⊆ LAux which yield u ∈ L` and v ∈ Lr. Consequently, uxv R uav ∗R w0 and so
uxv ∈ L(w0), i.e. x ∈ {〈u, v〉}C. �

Since ε ∈ e(θ), we have w ∈ e(wθ). Similarly, ε ∈ e(δG) by Lemma 2.7 and so w ∈
e(wθ)e(δG). Consequently, w ∈ γN (e(wθ)e(δ)) = e(wθδG) ⊆ L(w0) ∪ LAux. As w 6∈ LAux we
have w ∈ L(w0).

Lemma 4.3 (Completeness). Assume that wθδG ≤ w0 ∨ S holds in RLc for w ∈ Σ+. Then
w ∈ L(w0).

Since the problem whether w ∈ L(w0) is undecidable, the set {ϕ ≤ ψ | ϕ ≤ ψ holds in RLc }
is undecidable as well. Thus we obtain the following theorem.

Theorem 4.4. The equational theory of RLc is undecidable. Consequently, the set of for-
mulae provable in FL+

c is undecidable.

5. Conclusions

Theorem 4.4 implies also the undecidability of the logic FLc since FL+
c is its positive

fragment. Recall that FLc is an expansion of FL+
c where the language is expanded by a

constant 0 (see [8]). The sequent calculus for FLc can be obtained from the one shown in
Definition 2.1 by adding the following axiom and rule:

(0L)
0⇒

Γ⇒(0R)
Γ⇒ 0

Moreover, the notion of a sequent is modified a little bit by allowing on the right-hand
side a stoup, i.e. a formula or the empty sequence. Accordingly, one has to modify the rules
from Definition 2.1 in an obvious way. The logic FLco is an extension of FLc by the right
weakening rule:

Γ⇒(o)
Γ⇒ ϕ

The logic FLc is sound and complete with respect to the variety of pointed square-increasing
residuated lattices (also called FLc-algebras). An FLc-algebra A = 〈A,∧,∨, ·, \, /, 0, 1〉 is an
algebra such that 〈A,∧,∨, ·, \, /, 1〉 ∈ RLc and 0 ∈ A. Similarly, the logic FLco is sound and
complete with respect to a subvariety of FLc-algebras axiomatized by the identity 0 ≤ x.

The logics FLc and FLco have a common fragment, namely FL+
c . This follows easily for

FLc because every square-increasing residuated lattice is a reduct of an FLc-algebra, it suffices
to interpret 0 arbitrarily. Concerning FLco, it is sufficient to show that every square-increasing
residuated lattice A is embeddable into an FLc-algebra where 0 is its bottom element. Since
A need not have a minimum, we can first embed it into its Dedekind–MacNeille completion Ā.
Since the Dedekind–MacNeille completion preserves the identity x ≤ x2, we have Ā ∈ RLc
(see [4]). Consequently, Ā forms an FLc-algebra where 0 ≤ x holds if we interpret 0 as the
bottom element, it exists as the lattice reduct of Ā is complete.
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Theorem 5.1. The set of formulae provable in FLc (resp. FLco) is undecidable.

5.1. Used language. In our constructions we have used almost complete language, but this
is not necessary. The constant 1 has been used for simplicity and can be easily eliminated.
We know that x = 1\x and in all the remaining cases (in δG and θ) we can replace 1 by the
meet of all p\p for all atoms p occurring in our construction.

Similarly, we can get rid of all fusions. First, we can change even the original problem
w  ∗R w0 from Theorem 3.1 into an equivalent problem w  ∗R p, where p is a fresh atom,
by adding the rewriting rule w0 R p. Second, using the same construction as in the paper
we obtain an identity. We easily get an equivalent identity that contains no fusion using
x1 · · · · · xn ≤ y iff xn ≤ xn−1\(. . . \(x1\y) . . . ) and x1 · · · · · xm\y = xm\(. . . \(x1\y) . . . ).
Notice that in our case such a y can only be an atom or join of atoms.

It should be also noted that we could use / instead of \ changing the construction accord-
ingly. Therefore, we can clearly formulate the whole construction in the language containing
only an implication, join and meet. It does not matter whether as an identity in RLc or
sequent in FL+

c (with or without empty left-hand side).

5.2. Knotted axioms. It should be clear that the construction can be easily adapted for
logics having a weaker form of contraction xk ≤ xl, 1 ≤ k < l. Basically one has to change

the encoding by replacing wθ with wθ
k
, where if w = a1 . . . an then wθ

k
= a1θ

k . . . anθ
k.

Furthermore, the final inequality is changed to wθ
k
δkG ≤ w0 ∨ S.

In order to modify our proof, note that the identity x ≤ x2 is used only for θ and δG. Since
θ ≤ 1 and δG ≤ 1, we obtain θk = θk+1 and δkG = δk+1

G . If 1 is not in the language and we

change θ and δG according to Section 5.1 then we still have aθk = aθk+1 and aδkG = aδk+1
G for

every atom a occurring in wθ
k
δkG ≤ w0 ∨ S, which is sufficient to complete the proof.

5.3. Deduction theorem. From some point of view, one can understand our construction as
a form of deduction theorem for a very limited fragment of formulae—a reachability problem
for some rewriting systems is translated into provability in FL+

c . However, this suffices to get a
full form of “algorithmic” deduction theorem, because we can easily obtain the following chain
of reductions. Let ϕ be a formula and T a finite theory. First, the set of formulae provable
in FLc from T is recursively enumerable and hence there is a Minsky machine accepting an
input (a suitable encoding of ϕ and T ) iff ϕ is provable in FLc from T . Second, this paper
describes how to express such a decision problem in terms of provability in FL+

c . Moreover,
all the steps in this chain are constructive and explicit.

Theorem 5.2. Let T ∪{ϕ} be a finite set of formulae. There is an algorithm that produces a
formula ψ (given an input ϕ and T ) such that ψ is provable in FL+

c iff ϕ is provable in FLc

from T .
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[3] K. Chvalovský. Undecidability of consequence relation in full non-associative Lambek calculus. Journal
of Symbolic Logic, to appear.

[4] A. Ciabattoni, N. Galatos, and K. Terui. Algebraic proof theory for substructural logics: Cut-elimination
and completions. Annals of Pure and Applied Logic, 163(3):266–290, March 2012.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2nd
edition, 2002.

[6] R. Freese. Free modular lattices. Transactions of the AMS, 261(1):81–91, 1980.
[7] N. Galatos and P. Jipsen. Residuated frames with applications to decidability. Transactions of the AMS,

365:1219–1249, 2013.
[8] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic Glimpse at Substruc-

tural Logics, volume 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam,
April 2007.

[9] G. Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39(1):176–210,
1935.

[10] G. Gentzen. Untersuchungen über das logische Schließen II. Mathematische Zeitschrift, 39(1):405–431,
1935.

[11] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-
Wesley, 1st edition, 1979.
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